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Supplementary note: A Density Evolution
Framework for Recovery of Covariance and Causal

Graphs from Compressed Measurements

APPENDIX A
DERIVATION OF DE UPDATE EQUATIONS

As described in section 3, in order to analyze the conver-
gence of the message-passing algorithm, the two quantities
given by equations (8) and (9) are tracked over the course of
the algorithm, re-written here for convenience.

E(t) =
1

d2p2

d2∑
a=1

p2∑
i=1

(
µ
(t)
i→a − χ∗

i

)2
;

V (t) =
1

d2p2

d2∑
a=1

p2∑
i=1

v
(t)
i→a.

To simplify these two quantities, we need to simplify the
messages flowing through the factor graph. To that end, we
start with the messages sent from the check nodes to the
variable nodes, m̂

(t)
a→i ∼ N

(
µ̂
(t)
a→i, v̂

(t)
a→i

)
. [1] derived a

simplified update for the µ̂
(t)
a→i and v̂

(t)
a→i in Lemma 6. Here

we list the lemma and modify it our purpose to account for
the Kronecker product sensing matrix.

Lemma 1: Consider the message flowing from check node
a to variable node i, m̂

(t)
a→i ∼ N

(
µ̂
(t)
a→i, v̂

(t)
a→i

)
. Then the

following update can be obtained at the (t+ 1)-th iteration.

µ̂
(t+1)
a→i = χi +A

∑
j∈∂a\i

A⊗
aiA

⊗
aj

(
χj − µ

(t)
j→a

)
+AA⊗

aina;

(1)

v̂
(t+1)
a→i = Aσ2 + |∂a|V (t). (2)

Where χi is the i-th variable node and |∂a| is the degree of
the check node a.
Now consider the message going from variable nodes to
check nodes, m(t)

i→a ∼ N
(
µ
(t)
i→a, v

(t)
i→a

)
. Using the previous

lemma and exploiting some properties of Gaussian distribution
with some approximations along the way, µ

(t)
i→a and v

(t)
i→a

can be updated as follows, here we also make use of the
characterization of degrees of check nodes and the variable
nodes from the section A. The readers are referred to [1] for
more details.

µ
(t+1)
i→a ≈ hmean

(
χi + z

∑
i,i′,j,j′

fr
i,i′,j,j′

√
Fr

i,i′,j,j′ ;

∑
i,i′,j,j′

fr
i,i′,j,j′Fr

i,i′,j,j′

)
; (3)

v
(t+1)
i→a ≈ hvar

(
χi + z

∑
i,i′,j,j′

fr
i,i′,j,j′

√
Fr

i,i′,j,j′ ;

∑
i,i′,j,j′

fr
i,i′,j,j′Fr

i,i′,j,j′

)
. (4)

Where hmean and hvar are given by,

hmean(µ; v) = lim
β→∞

∫
xie

−βf(xi)e−
β(xi−µ)2

2v dxi∫
e−βf(xi)e−

β(xi−µ)2

2v dxi

;

hvar(µ; v) = lim
β→∞

∫
x2
i e

−βf(xi)e−
β(xi−µ)2

2v dxi∫
e−βf(xi)e−

β(xi−µ)2

2v dxi

− hmean(µ; v)

By plugging equations (21) and (22) in (8) and (9) yields the
following,

E(t+1) = Eprior(s)Ez

[
hmean

(
s+z

∑
i,i′,j,j′

fr
i,i′,j,j′

√
Fr

i,i′,j,j′ ;

∑
i,i′,j,j′

fr
i,i′,j,j′

√
Fr

i,i′,j,j′

)
− s

]2
; (5)

V (t+1) = Eprior(s)Ezhvar

(
s+ z

∑
i,i′,j,j′

fr
i,i′,j,j′

√
Fr

i,i′,j,j′ ;

∑
i,i′,j,j′

fr
i,i′,j,j′

√
Fr

i,i′,j,j′

)
. (6)

By setting f(χ) = β∥χ∥1, we enforce the returned solutions
to be sparse. This is equivalent to choosing Laplacian prior
for χ. Following [2] in the noiseless case, equations (23) and
(24) reduce to equations (10) and (11).

APPENDIX B
RELAXATION OF MESSAGE-PASSING CONVERGENCE

CONSTRAINT

In this section we sketch the proof of Theorem 3.1, refer to
[1] for more details of the proof. The derivation of necessary
conditions for limt→∞(E(t), V (t)) = (0, 0) can be split into
two parts:

• Part 1. Showing that (0, 0) is a fixed point of the DE
update equation.

• Part 2. Necessary conditions for DE update equations to
converge in the neighborhood of (0, 0).

By substituting (E(t), V (t)) = (0, 0) we can see that it
is indeed a fixed point. We begin part 2 by analyzing the
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functions δ
(t)
E = E(t+1) −E(t) and δ

(t)
V = V (t+1) − V (t). Let

us define the functions ΨE and ΨV as follows,

ΨE(E
(t);V (t)) = Eprior(s)Ez∼N (0,1)

[
prox

(
s+ a1z

√
E(t);

βa2V
(t)
)
− s

]2
;

ΨV (E
(t);V (t)) = Eprior(s)Ez∼N (0,1)

[
βa2V

(t)

prox′
(
s+ a1z

√
E(t);βa2V

(t)
)]2

.

Taking the Taylor expansion of δ(t+1)
E and δ

(t+1)
V and dropping

the higher order terms we obtain,[
δ
(t+1)
E

δ
(t+1)
V

]
=


(

∂ΨE(E,V )
∂E

)(t) (
∂ΨE(E,V )

∂V

)(t)
(

∂ΨV (E,V )
∂E

)(t) (
∂ΨV (E,V )

∂V

)(t)


︸ ︷︷ ︸
=:L(t)

[
δ
(t)
E

δ
(t)
V

]

For ΨE and ΨV to converge to 0, we would want the operator
norm of L(t) to be less than 1, i.e., inft

∥∥L(t)
∥∥ ≤ 1. Since∥∥∥L(t)

∥∥∥ = max

[(∂ΨE(E, V )

∂E

)(t)
,
(∂ΨV (E, V )

∂V

)(t)]
.

We can restrict the lower bounds of the individual terms to be
less than 1. This would result in

a21 ≤ p2

k2
, a2 ≤ p2

k2β
.

APPENDIX C
RELAXATION OF CONSTRAINTS FOR PREFERENTIAL

SENSING

In this section, we provide details for the relaxation of re-
quirements (2) and (3) for preferential sensing. In this regime,
we separately track the average error and the variance of the
HH, HL (LH), and LL parts of the covariance matrix sepa-
rately. The quantities E

(t)
HH , V

(t)
HH , E

(t)
HL, V

(t)
HL, and E

(t)
LL, V

(t)
LL

are defined as described in section IV-A and following the
procedure described in appendix A yields equations (19) and
(20) from the main text. Let us now define the following
quantities

E
(t+1)
HH = Eprior(s)Ez∼N (0,1)

[
prox

(
s+ zb

(t)
HH,1; b

(t)
HH,2

)
− s

]2
ΨE,HH

(
E

(t)
HH , V

(t)
HH , E

(t)
HL, V

(t)
HL, E

(t)
LL, V

(t)
LL

)
;

E
(t+1)
HL = Eprior(s)Ez∼N (0,1)

[
prox

(
s+ zb

(t)
HL,1; b

(t)
HL,2

)
− s

]2
ΨE,HL

(
E

(t)
HH , V

(t)
HH , E

(t)
HL, V

(t)
HL, E

(t)
LL, V

(t)
LL

)
;

E
(t+1)
LL = Eprior(s)Ez∼N (0,1)

[
prox

(
s+ zb

(t)
LL,1; b

(t)
LL,2

)
− s

]2
ΨE,LL

(
E

(t)
HH , V

(t)
HH , E

(t)
HL, V

(t)
HL, E

(t)
LL, V

(t)
LL

)
;

Similarly,

V
(t+1)
HH = Eprior(s)Ez∼N (0,1)

[
b
(t)
HH,2prox′

(
s+ zb

(t)
HH,1; b

(t)
HH,2

)]
ΨV,HH

(
E

(t)
HH , V

(t)
HH , E

(t)
HL, V

(t)
HL, E

(t)
LL, V

(t)
LL

)
;

V
(t+1)
HL = Eprior(s)Ez∼N (0,1)

[
b
(t)
HH,2prox′

(
s+ zb

(t)
HL,1; b

(t)
HL,2

)]
ΨV,HL

(
E

(t)
HH , V

(t)
HH , E

(t)
HL, V

(t)
HL, E

(t)
LL, V

(t)
LL

)
;

V
(t+1)
LL = Eprior(s)Ez∼N (0,1)

[
b
(t)
HH,2prox′

(
s+ zb

(t)
LL,1; b

(t)
LL,2

)]
ΨV,HL

(
E

(t)
HH , V

(t)
HH , E

(t)
HL, V

(t)
HL, E

(t)
LL, V

(t)
LL

)
;

We now define δ
(t)
E,HH , δ

(t)
E,HL, δ

(t)
E,LL, and

δ
(t)
V,HH , δ

(t)
V,HL, δ

(t)
V,LL in a similar manner to that in appendix

B.

A. Relaxation of Requirement 2

We use the shorthand, Ψ
(t)
V,HH =

ΨV,HL

(
E

(t)
HH , V

(t)
HH , E

(t)
HL, V

(t)
HL, E

(t)
LL, V

(t)
LL

)
for ease of

notation. Approximate δ
(t)
V,HH using its First-order Taylor

series expansion, we get

δ
(t+1)
V,HH = Ψ

(t+1)
V,HH −Ψ

(t)
V,HH

=

(
∂ΨV,HH(·)
∂EHH

)(t)

δ
(t)
E,HH +

(
∂ΨV,HH(·)

∂EHL

)(t)

δ
(t)
E,HL

+

(
∂ΨV,HH(·)

∂ELL

)(t)

δ
(t)
E,LL +

(
∂ΨV,HH(·)

∂VHH

)(t)

δ
(t)
V,HH

+

(
∂ΨV,HH(·)

∂VHL

)(t)

δ
(t)
V,HL +

(
∂ΨV,HH(·)

∂VLL

)(t)

δ
(t)
V,LL

+O

((
δ
(t)
V,HH

)2)
+O

((
δ
(t)
V,HL

)2)
+O

((
δ
(t)
V,LL

)2)

Following the same template as appendix B, the derivation
consists of two parts:

I. Verify that (0, 0, 0) is a fixed point. Which is a trivial
task.

II. Show that the DE equations w.r.t to V
(t)
HH , V

(t)
HL, V

(t)
LL

converges within a proximity of the origin.

It can be trivially checked that part I is true. We now
focus our attention to part II. Consider the region where
V

(t)
HH , V

(t)
HL, V

(t)
LL , in this case, we can ignore the quadratic

terms in the above equation. By exploiting the fact that
∂ΨV,HH/∂EHH = ∂ΨV,HH/∂EHL = ∂ΨV,HH/∂ELL = 0,
we obtain the following.
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δ
(t+1)
V,HH

δ
(t+1)
V,HL

δ
(t+1)
V,LL

 =


(

∂ΨV,HH

∂VHH

)(t) (
∂ΨV,HH

∂VHL

)(t) (
∂ΨV,HH

∂VLL

)(t)
(

∂ΨV,HL

∂VHH

)(t) (
∂ΨV,HL

∂VHL

)(t) (
∂ΨV,HL

∂VLL

)(t)
(

∂ΨV,LL

∂VHH

)(t) (
∂ΨV,LL

∂VHL

)(t) (
∂ΨV,LL

∂VLL

)(t)


︸ ︷︷ ︸
L

(t)
V

×

δ
(t)
V,HH

δ
(t)
V,HL

δ
(t)
V,LL


To make the LHS convergent we require inft

∥∥∥L(t)
V

∥∥∥
OP

≤ 1.

We now lower each term in the first row of L
(t)
V similar to

what was done in appendix B, hence we omit the details. We
then obtain,(∂ΨV,HH

∂VHH

)(t)
≥ kHHβHH

nHH

(∑
ℓ

λH,ℓ

ℓ

)2(∑
i

iρH,i

)2

(∂ΨV,HH

∂VHL

)(t)
≥ kHHβHH

nHH

(∑
ℓ

λH,ℓ

ℓ

)2(∑
i

iρH,i

)(∑
j

jρL,j

)
(∂ΨV,HH

∂VLL

)(t)
≥ kHHβHH

nHH

(∑
ℓ

λH,ℓ

ℓ

)2(∑
i

iρL,i

)2

Following the same procedure for the second row, we get(∂ΨV,HL

∂VHH

)(t)
≥ kHLβHL

nHL

(∑
ℓ

λH,ℓ

ℓ

)(∑
k

λL,k

k

)(∑
i

iρH,i

)2

(∂ΨV,HL

∂VHL

)(t)
≥ kHLβHL

nHL

(∑
ℓ

λH,ℓ

ℓ

)(∑
k

λL,k

k

)
(∑

i

iρH,i

)(∑
j

jρL,j

)
(∂ΨV,HL

∂VLL

)(t)
≥ kHLβHL

nHL

(∑
ℓ

λH,ℓ

ℓ

)(∑
k

λL,k

k

)(∑
i

iρL,i

)2

And finally for row 3 we get,(∂ΨV,LL

∂VHH

)(t)
≥ kLLβLL

nLL

(∑
ℓ

λL,ℓ

ℓ

)2(∑
i

iρH,i

)2

(∂ΨV,LL

∂VHL

)(t)
≥ kLLβLL

nLL

(∑
ℓ

λL,ℓ

ℓ

)2(∑
i

iρH,i

)
(∑

j

jρL,j

)
(∂ΨV,LL

∂VLL

)(t)
≥ kLLβLL

nLL

(∑
ℓ

λL,ℓ

ℓ

)2(∑
i

iρL,i

)2

Equation (26) from the main text is then obtained by enforcing
the condition on the operator norm on the above inequalities.

B. Relaxation of Requirement 3

The basic idea remains the same as in the previous sub-
section. We linearize the DE update equation with Taylor

expansion and enforce the difference δ
(t)
E,HH to decrease faster

than δ
(t)
E,HL and δ

(t)
E,LL. That is,

(∂ΨE,HH

∂EHH

)(t)
≤
(∂ΨE,HL

∂EHH

)(t)
; (7)(∂ΨE,HH

∂EHL

)(t)
≤
(∂ΨE,HL

∂EHL

)(t)
; (8)(∂ΨE,HH

∂ELL

)(t)
≤
(∂ΨE,HL

∂ELL

)(t)
. (9)

And, (∂ΨE,HH

∂EHH

)(t)
≤
(∂ΨE,LL

∂EHH

)(t)
; (10)(∂ΨE,HH

∂EHL

)(t)
≤
(∂ΨE,LL

∂EHL

)(t)
; (11)(∂ΨE,HH

∂ELL

)(t)
≤
(∂ΨE,LL

∂ELL

)(t)
. (12)

Following the same logic as the previous subsection, we can
lower-bound each of the gradients in the above inequalities.
We then obtain,

(∂ΨE,HH

∂EHH

)(t)
≥ kHH

nHH

(∑
ℓ

λH,ℓ√
ℓ

)4(∑
i

√
iρH,i

)4

(∂ΨE,HH

∂EHL

)(t)
≥ kHH

nHH

(∑
ℓ

λH,ℓ√
ℓ

)4(∑
i

√
iρH,i

)2(∑
j

√
jρL,j

)2

(∂ΨE,HH

∂ELL

)(t)
≥ kHH

nHH

(∑
ℓ

λH,ℓ√
ℓ

)4(∑
i

√
iρL,i

)4

And,

(∂ΨE,HL

∂EHH

)(t)
≥ kHL

nHL

(∑
ℓ

λH,ℓ√
ℓ

)2(∑
ℓ

λL,ℓ√
ℓ

)2(∑
i

√
iρH,i

)4

(∂ΨE,HL

∂EHL

)(t)
≥ kHL

nHL

(∑
ℓ

λH,ℓ√
ℓ

)2(∑
ℓ

λL,ℓ√
ℓ

)2

(∑
i

√
iρH,i

)2(∑
j

√
jρL,j

)2

(∂ΨE,HL

∂ELL

)(t)
≥ kHL

nHL

(∑
ℓ

λH,ℓ√
ℓ

)2(∑
ℓ

λL,ℓ√
ℓ

)2(∑
i

√
iρL,i

)4

Finally,

(∂ΨE,LL

∂EHH

)(t)
≥ kLL

nLL

(∑
ℓ

λL,ℓ√
ℓ

)4(∑
i

√
iρH,i

)4

(∂ΨE,LL

∂EHL

)(t)
≥ kLL

nLL

(∑
ℓ

λL,ℓ√
ℓ

)4(∑
i

√
iρH,i

)2(∑
j

√
jρL,j

)2

(∂ΨE,LL

∂ELL

)(t)
≥ kLL

nLL

(∑
ℓ

λL,ℓ√
ℓ

)4(∑
i

√
iρL,i

)4

Combining this with inequalities (38)-(43) yields the inequal-
ities (27) and (28) in the main text.



4

REFERENCES

[1] H. Zhang, A. Abdi, and F. Fekri, “a general compressive sensing construct
using density evolution,” IEEE Transactions on Signal Processing, pp. 1–
16, 2022.

[2] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proceedings of the National Academy of
Sciences, vol. 106, no. 45, pp. 18 914–18 919, 2009.


