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Abstract

Understanding causal relationships between variables is fundamental across sci-
entific disciplines. Most causal discovery algorithms rely on two key assump-
tions: (i) all variables are observed, and (ii) the underlying causal graph is acyclic.
While these assumptions simplify theoretical analysis, they are often violated in
real-world systems, such as biological networks. Existing methods that account
for confounders either assume linearity or struggle with scalability. To address
these limitations, we propose DCCD-CONF, a novel framework for differentiable
learning of nonlinear cyclic causal graphs in the presence of unmeasured con-
founders using interventional data. Our approach alternates between optimizing the
graph structure and estimating the confounder distribution by maximizing the log-
likelihood of the data. Through experiments on synthetic data and real-world gene
perturbation datasets, we show that DCCD-CONF outperforms state-of-the-art
methods in both causal graph recovery and confounder identification. Addition-
ally, we also provide consistency guarantees for our framework, reinforcing its
theoretical soundness.

1 Introduction

Modeling cause-effect relationships between variables is a fundamental problem in science [1, 2, 3],
as it enables the prediction of a system’s behavior under previously unseen perturbations. These
relationships are typically represented using directed graphs (DGs), where nodes correspond to
variables, and directed edges capture causal dependencies. Consequently, causal discovery reduces to
learning the structure of these graphs.

Existing causal discovery algorithms can be broadly classified into three categories: (i) constraint-
based methods, (ii) score-based methods, and (iii) hybrid methods. Constraint-based methods,
such as the PC algorithm [4, 5, 6], search for causal graphs that best satisfy the independence
constraints observed in the data. However, since the number of conditional independence tests grows
exponentially with the number of nodes, these methods often struggle with scalability. Score-based
methods, such as the GES algorithm [7, 8], learn graph structures by maximizing a penalized score
function, such as the Bayesian Information Criterion (BIC), over the space of graphs. Given the
vast search space, these methods often employ greedy strategies to reduce computational complexity.
A significant breakthrough came with Zheng et al. [9], who introduced a continuous constraint
formulation to restrict the search space to acyclic graphs, inspiring several extensions [10, 11, 12,
13, 14, 15] that frame causal discovery as a continuous optimization problem under various model
assumptions. Hybrid methods [16, 17, 18] integrate aspects of both constraint-based and score-based
approaches, leveraging independence constraints while optimizing a score function.

Most causal structure learning methods assume (i) a directed acyclic graph (DAG) with
no directed cycles and (ii) complete observability, meaning no unmeasured confounders.
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Figure 1: (a) Example of a directed
mixed graph G, where the bidirectional
edges represent hidden confounders,
with σij indicating their correspond-
ing strengths; (b) Mutilated graph,
do(Ik)(G), resulting from the interven-
tional experiment Ik = {X3}, where all
incoming edges (including bidirectional
edges) to X3 are removed.

While these assumptions simplify the search space, they
are often unrealistic, as real-world systems—especially in
biology—frequently exhibit feedback loops and hidden
confounders [19]. Enforcing these constraints can also in-
crease computational complexity, particularly in ensuring
acyclicity, which often requires solving challenging com-
binatorial or constrained optimization problems. These
limitations hinder the practical applicability of existing
methods in settings where such violations are unavoid-
able.

Several approaches have been developed to address the
challenge of feedback loops within causal graphs. Early
work by Richardson [20] extended constraint-based ap-
proaches for Directed Acyclic Graphs (DAGs) to accom-
modate directed cycles. Another key contribution came
from Lacerda et al. [21], who generalized Independent
Component Analysis (ICA)-based causal discovery to han-
dle linear non-Gaussian cyclic graphs. More recently, a
growing body of research has focused on score-based methods for learning cyclic causal graphs
[22, 23, 24, 25]. Additionally, some approaches leverage interventional data to improve structure
recovery in cyclic systems. For instance, Hyttinen et al. [26] and Huetter and Rigollet [22] introduced
frameworks that explicitly incorporate interventions to refine cyclic graph estimation. Sethuraman
et al. [27] further advanced this line of research by introducing a differentiable framework for learning
nonlinear cyclic graphs. Unlike differentiable DAG learners that enforce acyclicity through aug-
mented Lagrangian-based solvers, their approach sidesteps these constraints by directly modeling the
data likelihood, enabling more efficient and flexible learning of cyclic causal structures. However,
their method assumes the absence of unmeasured confounders, which limits its applicability in
real-world settings where hidden confounders are often present.

Causal discovery in the presence of latent confounders has seen limited development, with most
existing approaches grounded in constraint-based methodologies. Extensions of the PC algorithm,
such as the Fast Causal Inference (FCI) algorithm [28], construct a Partial Ancestral Graph (PAG)
to represent the equivalence class of DAGs in the presence of unmeasured confounders, and can
accommodate nonlinear dependencies depending on the chosen conditional independence tests.
However, standard FCI does not incorporate interventional data, prompting extensions such as
JCI-FCI [29] and related approaches [30] that combine observational and interventional settings.
Jaber et al. [31] further advanced this line of work by allowing for unknown interventional targets.
Additionally, Forré and Mooij [32] introduced σ-separation, a generalization of d-separation, enabling
constraint-based causal discovery in the presence of both cycles and latent confounders. A few recent
approaches, such as Bhattacharya et al. [33], have explored continuous optimization frameworks
using differentiable constraints, though these methods are currently limited to linear settings. Overall,
a unified framework capable of handling nonlinearity, cycles, latent confounders, and interventions
remains largely absent.

Contributions. In this work, we tackle three key challenges in causal discovery: directed cycles,
nonlinearity, and unmeasured confounders. Our main contributions are:

• We introduce DCCD-CONF, a novel differentiable causal discovery framework for learning
nonlinear cyclic relationships under Gaussian exogenous noise, with confounders modeled as
correlations in the noise term.

• We show that exact maximization of the proposed score function results in identification of the
interventional equivalence class of the ground truth graph.

• We conduct extensive evaluations, comparing DCCD-CONF with state-of-the-art causal discovery
methods on both synthetic and real-world datasets.

Organization. The paper is structured as follows: Section 2 introduces the problem setup. In
Section 3, we present DCCD-CONF, our differentiable framework for nonlinear cyclic causal
discovery with unmeasured confounders. We then evaluate its effectiveness on synthetic and real-
world datasets in Section 4. Finally, Section 5 concludes the paper.
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2 Problem Setup

2.1 Structural Equations for Cyclic Causal Graphs

Let G = (V, E ,B) represent a possibly cyclic directed mixed graph (DMG) that encodes the causal
dependencies between the variables in the vertex set V = [d], where [d] = {1, . . . , d}. E denotes the
set of directional edges of the form i→ j in G, and B denotes the set of bidirectional edges of the form
i↔ j in G. Each node i is associated with a random variable Xi with the directed edge i→ j ∈ E
representing a causal relation between Xi and Xj , and the bidirectional edge i↔ j ∈ B indicates the
presence of a hidden confounder between Xi and Xj . Following the framework proposed by Bollen
[34] and Pearl [35], we use structural equations model (SEM) to algebraically describe the system:

Xi = Fi(XpaG(i), Zi), i = 1, . . . , d, (1)

where paG(i) := {j ∈ [d] : j → i ∈ E} represents the parent set of Xi in G, and XpaG(i) denotes the
components of X = (X1, . . . , Xd) indexed by the parent set paG(i). We exclude self-loops (edges of
the form Xi → Xi) from G, as their presence can lead to identifiability challenges [36]. The function
Fi, referred to as causal mechanism, encodes the functional relationship between Xi and its parents
XpaG(i), and the exogenous noise variable Zi.

The collection of exogenous noise variables Z = (Z1, . . . , Zd) account for the stochastic nature as
well as the confounding observed in the system. We make the assumption that the exogenous noise
vector follows a Gaussian distributions: Z ∼ N (0,ΣZ). Notably, if (ΣZ)ij ̸= 0, then variables
Xi and Xj are confounded, i.e., i ↔ j ∈ B. In other words, confounding is modeled through
correlations in the exogenous noise variables. Intuitively, if Xi and Xj share a hidden cause, their
unexplained variation (the part not accounted for by their observed parents) will tend to move together.
By allowing the noise terms Zi and Zj to be correlated, this shared influence can be effectively
captured. This formulation generalizes prior work by allowing cycles, extending both nonlinear cyclic
models without unmeasured confounders that assume independent noise terms [27], and acyclic
models without confounders [37].

By collecting all the causal mechanisms into the joint function F = (F1, . . . , Fd), we can then
combine (1) over i = 1, . . . , d to obtain the equation

X = F(X,Z). (2)

We will use (2) to represent the causal system due to its simplicity for subsequent discussion. The
observed data represents a snapshot of a dynamical process where the recursive equations in (2)
define the system’s state at its equilibrium. Thus, in our experiments we assume that the system
has reached the equilibrium state. For a given random draw of Z, the value of X is defined as the
solution to (2). To that end, we assume that (2) admits a unique fixed point for any given Z. We refer
to the map fx : X 7→ Z as the forward map, and fz : Z 7→X as the reverse map. In Section 3.1, we
show that the chosen parametric family of functions indeed guarantees the existence of a unique fixed
point. Under these restrictions, the probability density of X is well defined and is given by

pG(X) = pZ
(
fx(X)

)∣∣det (Jfx(X)
)∣∣, (3)

where Jfx(X) denotes the Jacobian matrix of the function fx at X .

2.2 Interventions

In our work, we consider surgical interventions [35], also known as hard interventions, where all the
incoming edges to the intervened nodes are removed from G. Given a set of intervened upon nodes
(also known as interventional targets), denoted as I ⊆ V , the structural equations in (1) are modified
as follows

Xi =

{
Ci, if Xi ∈ I,

Fi(XpaG(i), Zi), if Xi /∈ I,
(4)

where Ci is a random variable sampled from a known distribution, i.e., Ci ∼ pI(Ci). We denote
do(I)(G) to be the mutilated graph under the intervention I (see Figure 1). Note that Xi is no longer
confounded if it is intervened on.

We consider a family of K interventional experiments I = {Ik}k∈[K], where Ik represents the
interventional targets for the k-th experiment. Let Uk ∈ {0, 1}d×d denote a diagonal matrix with
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(Uk)ii = 1 if i /∈ Ik, and (Uk)ii = 0 if i ∈ Ik. Similar to the observational setting, (4) can be
vectorized to obtain the following form

X = UkF(X,Z) +C, (5)

where C = (C1, . . . , Cd) is a vector with Ci ∼ pI(Ci) if i ∈ Ik, and Ci = 0 otherwise. For the
interventional targets Ik ∈ I, let f (Ik)x denote the forward map. Similar to the observational setting,
we make the following assumption on the set of interventions.
Assumption 1 (Interventional stability). Let I = {Ik}k∈[K] be a family of interventional targets.
For each Ik ∈ I, the structural equations in (5) admits a unique fixed point given the exogenous
noise vector Z.

Thus, the probability distribution of X for the interventional targets Ik is given by

pdo(Ik)(G)(X) = pI(C)pZ

([
f (Ik)x (X)

]
Uk

)∣∣det (J
f
(Ik)
x

(X)
)∣∣, (6)

where Uk = {i : i ∈ V \ I} denotes the index of purely observed nodes, and pZ

([
f
(Ik)
x (X)

]
Uk

)
is

the marginal distribution of the combined vector Z, restricted to the components indexed by Uk.

Given a family of interventions I, our goal is to learn the structure of the DMG by maximizing the
log-likelihood of the data, in addition to identifying the variables that are being confounded by the
unmeasured confounders Z. The next section presents our approach to addressing this problem.

3 DCCD-CONF: Differentiable Cyclic Causal Discovery with Confounders

In this section, we present our framework for differentiable learning of cyclic causal structures in the
presence of unmeasured confounders. We start by modeling the causal mechanisms, then define the
score function used for learning, followed by a theorem that validates its correctness. Finally, we
outline the algorithm for estimating the model parameters.

3.1 Modeling Causal Mechanism

We model the structural equations in (2) using implicit flows [38], which define an invertible mapping
between x and z by solving the root of a function G(x, z) = 0, where G : R2d → Rd. Specifically,
we take G(x, z) = x− F(x, z). General implicit mappings, however, do not guarantee invertibility
or permit efficient computation of the log-determinant required for evaluating (6). To balance
expressiveness with tractability, we adopt the structured form proposed by Lu et al. [38] for the causal
mechanism:

F(x, z) = −gx(x) + gz(z) + z, (7)

where gx and gz are restricted to be contractive functions. A function g : Rd → Rd is contractive
if there exists a constant L < 1 such that ∥g(x) − g(y)∥ ≤ L∥x − y∥ for all x,y ∈ Rd. This
contractiveness ensures that the associated implicit map is uniquely solvable and invertible (see
Theorem 1 in [38]).

Under this formulation, the forward map takes the form fx(x) = (id + gz)
−1 ◦ (id + gx)(x),

where id denotes the identity map. Given x (or z), the corresponding value of z (or x) can be
computed via a root-finding procedure, i.e., z = RootFind(x − F(x, ·)), specifically, we employ
a quasi-Newton method (i.e., Broyden’s method [39]) to find the roots. To capture more complex
nonlinear interactions between the observed variables X and latent confounders Z, multiple such
implicit blocks can be stacked. For simplicity, we focus on a single implicit flow block for subsequent
discussion.

We parameterize the functions gx and gz using neural networks. The adjacency matrix of the causal
graph G is encoded as a binary matrix MG ∈ {0, 1}d×d, representing the presence of directed edges
and serving as a mask on the inputs to gx. The diagonal entries of MG are explicitly enforced
to be zero to prevent self-loops. Similarly, the identity matrix is used to mask the inputs to gz .
Consequently, the causal mechanism is defined as:

[Fθ(X,Z)]i =
[
− NN(MG

∗,i ⊙X | θx) + NN(Zi | θz) + Zi

]
i
, (8)
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where NN(· | θ) denotes a fully connected neural network parameterized by θ, ⊙ denotes the
Hadamard product, and MG

∗,i is the i-th column of MG . The contractivity of gx and gz can be
enforced by rescaling their weights using spectral normalization [40]. Moreover, the contractive
nature of the causal mechanism facilitates efficient computation of the score function used for learning
causal graphs, as discussed in Section 3.2.

While the contractivity assumption may seem restrictive, it ensures stability and well-posedness in
the presence of directed cycles. If the causal graph is known to be acyclic, this assumption can be
relaxed (see Appendix C.1).

3.2 Score function

Given a family of interventions I = {Ik}k∈[K], we would like to learn the parameters of the structural
equation model, i.e., causal graph structure, causal mechanism, and confounder distribution. To that
end, similar to prior work [27, 41, 15] in this domain we employ regularized log-likelihood of the
observed nodes as the score function to be maximized. That is,

SI(G) := sup
θ,ΣZ

K∑
k=1

E
X∼p(k)

log pdo(Ik)(G)(X)− λ|G| (9)

where p(k) is the data generating distribution for the k-th interventional experiment Ik, ΣZ is
the parameter (covariance matrix) governing the confounder distribution pZ , θ = (θx,θz) is the
combined causal mechanism parameters, and |G| denotes a sparsity enforcing regularizer on the edges
of G, and pdo(Ik)(G)(X) is given by (6).

We now present the main theoretical result of this paper. The following theorem establishes that,
under appropriate assumptions, the graph Ĝ estimated by maximizing (9) belongs to the same general
directed Markov equivalence class (introduced by [36]) as the ground truth graph G∗ for each
interventional setting Ik ∈ I, denoted as Ĝ ≡I G∗, see Appendix A.1. Due to space constraints we
provide the proof sketch below, see Appendix A.3 for complete proof of Theorem 2.
Theorem 2. Let I = {Ik}Kk=1 be a family of interventional targets, let G∗ denote the ground
truth directed mixed graph, let p(k) denote the data generating distribution for Ik, and Ĝ :=
argmaxG S(G). Then, under the Assumptions 1, A.13, A.14, and A.15, and for a suitably chosen
λ > 0, we have that Ĝ ≡I G∗. That is, Ĝ is I-Markov equivalent to G∗.

Proof (Sketch). Building on the characterization of general directed Markov equivalence class by
Bongers et al. [36], extended to the interventional setting, we show that any graph outside this
equivalence class has a strictly lower score than the ground truth graph G∗. This follows from the fact
that certain independencies present in the data are not captured by graphs outside the equivalence
class. Combined with the expressiveness of the model class, this prevents such graphs from fitting
the data properly.

If the intervention set consists of all single-node interventions, I = {Ik}dk=1 with Ik = {k},
Hyttinen et al. [26] showed that the ground truth DMG can be uniquely recovered in the linear
setting. Moreover, in the absence of cycles and confounders, this result extends to the nonlinear
case, as demonstrated by Brouillard et al. [15]. However, determining the necessary conditions on
interventional targets for perfect recovery in general DMGs with cycles and confounders remains an
open problem. Nonetheless, in practice, we find that observational distribution in combination with
single-node interventions across all nodes lead to perfect recovery of the ground truth, even in the
nonlinear case, as shown in Section 4.

3.3 Updating model parameters

In practice, we use gradient based stochastic optimization to maximize (9). For this purpose, following
Sethuraman et al. [27] and Brouillard et al. [15], the entries of adjacency matrix Mij are modeled as
Bernoulli random variable with parameters bij , grouped into the matrix σ(B). We denote M ∼ σ(B)
to indicate that Mij ∼ Bern(bij) for all i, j ∈ [d]. In this formulation, the sparsity regularizer
is ∥M∥0, which is computationally intractable and thus we use the ℓ1-norm, ∥M∥1 as a proxy.
Consequently, the score function in (9) is replaced by the following relaxation:
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ŜI(B) := sup
θ,ΣZ

E
M∼σ(B)

[
K∑

k=1

Nk∑
i=1

log pdo(Ik)(G)(x
(i,k))− λ∥M∥1

]
, (10)

where we replace the expectation with respect to data distribution in (9) with sum over the finite
samples, x(i,k) represents the i-th data sample in the k-the interventional setting. We note that, since
pZ = N (0,ΣZ), the covariance of the exogenous confounder vector, ΣZ , is implicitly embedded
within pdo(Ik)G(x

(i,k)) in the score function.

The optimization of the score function is carried in two steps. First, we optimize Ŝ(B) with respect
to the neural network parameters θ and the graph structure parameters B. Next, we optimize Ŝ(B)
with respect to the parameters of the exogenous noise distribution, ΣZ . However, maximizing
ŜI(B) presents two main challenges: (i) computing log pX(X) is computationally expensive due
to the presence of |det(J

f
(Ik)
x

(X))|, which requires O(d2) gradient calls, and (ii) updating ΣZ via
stochastic gradients could lead to stability issues as ΣZ may loose its positive definiteness.

We now describe how these challenges are addressed, along with the specific procedures for updating
the individual model parameters.

3.3.1 Computing log determinant of the Jacobian

As discussed earlier, computing log |J
f
(Ik)
x

(X)| is a significant challenge in maximizing the score

function Ŝ(B). To address this, we utilize the unbiased estimator of the log-determinant of the
Jacobian introduced by Behrmann et al. [40], which is based on the power series expansion of
log(1 + x). Since f

(Ik)
x (x) = (id+Ukgz)

−1 ◦ (id+Ukgx)(x)

log
∣∣det (J

f
(Ik)
x

(X)
)∣∣ = log

∣∣ det (I+ JUkgx
(X)

)∣∣− log
∣∣det (I+ JUkgz

(Z)
)∣∣

=

∞∑
m=1

(−1)m+1

m

[
Tr

{
Jm
Ukgx

(X)
}
− Tr

{
Jm
Ukgz

(Z)
}]

, (11)

where I ∈ Rd×d denotes the identity matrix, Jm
Ukgx

represents the Jacobian matrix raised to the m-th
power, and Tr denotes the trace of matrix. The series in (11) is guaranteed to converge if the causal
functions gx and gz are contractive [42].

In practice, the power series is truncated to a finite number of terms, which may introduce bias into the
estimator. To mitigate this issue, we follow the stochastic approach of Chen et al. [43]. Specifically,
we sample a random cut-off point n ∼ pN(n) for truncating the power series and weight the i-term
in the finite series by the inverse probability of the series not ending at i. This yields the following
unbiased estimator

log
∣∣det (J

f
(Ik)
x

(X)
)∣∣ = E

n∼pN(N)

[
n∑

m=1

(−1)m+1

m
·
Tr

{
Jm
Ukgx

(X)
}
− Tr

{
Jm
Ukgz

(Z)
}

pN(ℓ ≥ m)

]
. (12)

The gradient calls can be reduced even further using the Hutchinson trace estimator [44], see
Appendix B for more details.

3.3.2 Updating neural network and graph parameters.

In the first step of the parameter update, keeping ΣZ fixed, the parameters of the neural network θ
and the graph structure B are updated using the backpropagation algorithm with stochastic gradients.
The gradient of the score function ŜI(B) with respect to B is computed using the Straight-Through
Gumbel estimator. This involves using Bernoulli samples in the forward pass while computing score,
and using samples from Gumbel-Softmax distribution in the backward pass to compute the gradient,
which can be differentiated using the reparameterization trick [45].

3.3.3 Updating the confounder-noise distribution parameters

In second parameter update step, we fix the value of θ and B and focus on the confounder-noise
distribution parameter ΣZ . First, consider the case where no interventions are applied, i.e, Ik =
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∅. Note that the dependence of Ŝ(B) on ΣZ arises solely from pZ , which is embedded within
pdo(Ik)(G)(X). Therefore, we can thus ignore the remaining terms in Ŝ(B) and focus exclusively on
pZ . Let {x(i)}Ni=1 denote the observational data. From the forward map, we have z(i) = fx(x

(i)).
Given that pZ = N (0,ΣZ), the relevant parts of Ŝ(B) with respect to ΣZ , denoted as L̃(Ik), are
expressed as:

L̃(Ik) = sup
ΣZ

N∑
i=1

−1

2
log |ΣZ | −

(z(i))⊤Σ−1
Z z(i)

2
. (13)

Simplifying (13) yields a more convenient form:

L̃(Ik) = sup
ΣZ

−Tr(SΣ−1
Z )− log |ΣZ |, (14)

where S = 1
n

∑N
i=1 z

(i)(z(i))⊤ is the sample covariance of Z.

Maximizing (14) directly using backpropagation and stochastic gradients results in stability issues
as ΣZ may loose its positive definiteness. However, Friedman et al. [46] demonstrated that the
sparsity-regularized version of (14) is a concave optimization problem in Σ−1

Z that can be efficiently
solved by optimizing the columns of ΣZ individually. This is achieved by formulating the column
recovery as a lasso regression problem. We adopt this strategy while updating the ΣZ during the
maximization of Ŝ(B).

Let W = ΣZ be the estimate of the covariance matrix. We reorder W such that the column and row
being updated can be placed at the end, resulting in the following partition

W =

(
W11 w12

w⊤
12 w22

)
, S =

(
S11 s12
s⊤12 s22

)
. (15)

Then, as shown by Friedman et al. [46], w12 = W11β, where β is the solution to the following lasso
regression problem, denoted as lasso(W11, s12, ρ):

min
β

1

2
∥W1/2

11 β − y∥2 + ρ∥β∥1, (16)

where y = W
−1/2
11 s12, and ρ is the regularization constant that promotes sparsity in Σ−1

Z .

In an interventional setting Ik, the dependence of Ŝ(B) on ΣZ arrises from the marginal distribution
of Z restricted to components indexed by Uk, i.e., purely observed nodes. Since Z follows a Gaussian
distribution, ZUk

also follows a Gaussian distribution with ZUk
∼ N (0, Σ̃Ik). From the properties

of Gaussian distribution [47], we have Σ̃Ik = (ΣZ)Uk,Uk
. Consequently, for the interventional

setting Ik, (14) becomes

L(Ik) = sup
ΣZ

−Tr
(
SIk(ΣZ)

−1
Uk,Uk

)
− log

∣∣(ΣZ)Uk,Uk

∣∣, (17)

where SIk = 1
n

∑N
i=1 z

(i)
Uk
(z

(i)
Uk
)⊤ is the sample covariance of Z corresponding to the purely observed

nodes. In this case, we set W = (ΣZ)Uk,Uk
and the rest of the update procedure remains the same.

The overall parameter update procedure is summarized in Algorithm 1 in Appendix B.

4 Experiments

The code is included in the supplementary materials and will be made public upon publication.

We evaluated DCCD-CONF on both synthetic and real-world datasets, comparing its performance
against several state-of-the-art baselines: NODAGS-Flow [27], LLC [26], and DCDI [15]. NODAGS-
Flow learns nonlinear cyclic causal graphs but does not model unmeasured confounders. LLC
accounts for confounders but is limited to linear cyclic SEMs. DCDI supports nonlinear SEMs but
does not handle confounders or cycles. We also include a comparison between DCCD-CONF and
JCI-FCI [29], a constraint-based method that models confounders, interventions, and nonlinearity,
but outputs a partial ancestral graph (PAG), in the Appendix (see Appendix C).
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Figure 2: Performance of causal graph and confounder recovery under varying problem dimensions.
(Top row) Number of observed variables is fixed at d = 10, while the number of latent confounders
ranges from 2 to 8. (Bottom row) The number of confounders is fixed to 0.4d, while d is varied from
10 to 80. Left column shows results for linear SEMs, and right column for nonlinear SEMs.

4.1 Synthetic data

In all synthetic experiments, the cyclic graphs were generated using Erdős-Rényi (ER) random graph
model with the outgoing edge density set to 2. We evaluated DCCD-CONF and the baselines on both
linear as well as nonlinear SEMs described in Section 2. Our training data set consists of observational
data and single-node interventional over all the nodes in the graph, i.e, I =

{
∅, {1}, . . . , {d}

}
, with

Nk = 1000 samples per intervention. Furthermore, in all the experiments presented here, the SEM
was constrained to be contractive. However, we also compare the performance of DCCD-CONF to
the baselines on non-contractive SEMs in the appendix. For causal graph recovery (directed edges),
we use the normalized structural Hamming distance (SHD) as the error metric. SHD counts the
number of operations (addition, deletion, and reversal) needed to match the estimated causal graph to
the ground truth, and normalization is done with respect to the number of nodes in the graph (lower
the better). For confounder identification (bidirectional edges), we compare the non-diagonal entries
of the estimated confounder-noise covariance matrix to those of the ground truth. We use F1 score
as the error metric (higher the better). More details regarding the experimental setup is provided in
Appendix B.

Impact of confounder count. We evaluate the performance of DCCD-CONF and the baselines
using the previously defined error metrics, varying the confounder ratio (number of confounders
divided by the number of nodes) from 0.2 to 0.8. In this case, the number of nodes in the graph is
set to d = 10. The results, summarized in Figures 2a and 2b, show that DCCD-CONF consistently
achieves lower SHD across all confounder ratios in both linear and nonlinear SEMs. Notably, in
nonlinear SEMs, DCCD-CONF outperforms all baselines in causal graph recovery. Additionally,
it demonstrates competitive results in confounder identification, highlighting its robustness in both
tasks.

Scaling with number of nodes. We compare the performance of DCCD-CONF and the baselines
as the number of nodes (d) varies from 10 to 80, with results summarized in Figures 2c and 2d.
The number of confounders is set to 0.4d. As the number of nodes increases, SHD rises across
all methods, reflecting the increased difficulty of causal graph recovery in larger graphs. However,
DCCD-CONF consistently outperforms the baselines in many cases, achieving lower SHD and higher
F1 score, suggesting superior scalability with increasing graph size.
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Figure 3: Performance comparison between
DCCD-CONF and LLC for d = 10 and a con-
founder ratio of 0.4, as the number of training
interventions varies from 0 to 10.

Scaling with interventions. In this section,
we evaluate graph recovery performance as the
number of training interventions K varies from
0 to d, with d = 10 fixed. The case K = 0 cor-
responds to the observational dataset. Results
for the nonlinear SEM setting are presented in
Figure 3. As illustrated, DCCD-CONF consis-
tently outperforms LLC across all values of K,
and achieves near-perfect graph recovery when
all the nodes in the graph are intervened. It is
also worth noting that LLC cannot operate in
the purely observational setting (K = 0).

4.2 Real World data

We evaluate DCCD-CONF on learning the causal graph structure of a gene regulatory network from
real-world gene expression data with genetic interventions. Specifically, we use the Perturb-CITE-
seq dataset [48], which contains gene expression data from 218,331 melanoma cells across three
conditions: (i) control, (ii) co-culture, and (iii) IFN-γ. Due to computational constraints, we restrict
our analysis to a subset of 61 genes from the 20,000 genes in the genome, following the experimental
setup of Sethuraman et al. [27] (see Appendix B for details). Each cell condition is treated as a
separate dataset consisting of single-node interventions on the selected 61 genes.

Table 1: Results on Perturb-CITE-seq [48] gene perturbation dataset.
The table presents the average Negative Log-Likelihood (NLL) on the
test set, averaged over multiple trials (standard deviation is reported
within paranthesis).

Method Control Co-Culture IFN-γ
DCCD-CONF 1.375 (0.103) 1.245 (0.039) 1.235 (0.338)
NODAGS 1.465 (0.015) 1.406 (0.012) 1.504 (0.009)
LLC 1.385 (0.039) 1.325 (0.029) 1.430 (0.048)
DCDI 1.523 (0.036) 1.367 (0.018) 1.517 (0.041)

Since the dataset does not pro-
vide a ground truth causal
graph, SHD cannot be used
for direct performance com-
parison. Instead, we assess
DCCD-CONF and the base-
lines based on predictive per-
formance over unseen inter-
ventions. To evaluate perfor-
mance, we split each dataset
90-10, using the smaller por-
tion as the test set, and measure performance using negative log-likelihood (NLL) on the test data
after model training (lower the better). The results are presented in Table 1. From Table 1, we can see
that DCCD-CONF outperforms all the baselines across all the three cell conditions, showcasing the
efficacy of the model and prevalence of confounders in real-world systems.

Additional experiments. Additionally, we also provide results in Appendix C for the following
settings: (i) performance comparison on non-contractive SEMs when the underlying graph is restricted
to DAGs, (ii) performance comparison as a function of training data size, (iii) performance comparison
as a function of noise variance, (iv) performance comparison as a function outgoing edge density, and
(v) performance comparison between DCCD-CONF and JCI-FCI.

5 Discussion

In this work, we introduced DCCD-CONF, a novel differentiable causal discovery framework that
handles directed cycles and unmeasured confounders, assuming Gaussian exogenous noise. It
models causal mechanisms via neural networks and learns the causal graph structure by maximizing
penalized data likelihood. We provide consistency guarantees in the large-sample regime and
demonstrate, through extensive synthetic and real-world experiments, that DCCD-CONF outperforms
state-of-the-art methods, maintaining robustness with increasing confounders and graph size. On the
Perturb-CITE-seq dataset, our model achieves superior predictive accuracy.

While the focus of this work is limited to Gaussian exogenous noise, we plan to investigate other
noise distributions for future research. Other future directions include supporting missing data, and
relaxing interventional assumptions by incorporating soft interventions and unknown interventional
targets.
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Appendices

The appendix is structured as follows: Appendix A presents the theoretical foundations of differ-
entiable cyclic causal discovery in the presence of unmeasured confounders, including the proof
of Theorem 2, and a characterization of the equivalence class of DMGs that maximize the score
function. Appendix B provides implementation details of DCCD-CONF and the baselines. Finally,
Appendix C provides additional experimental results comparing DCCD-CONF with the baselines.

A Theory

In this section, we establish the theoretical foundations of differentiable cyclic causal discovery in the
presence of unmeasured confounders. We begin by reviewing key definitions and results from prior
work that are essential for proving Theorem 2, starting with fundamental graph terminology.

A.1 Preliminaries

Consider a directed mixed graph G = (V, E ,B). A path π between nodes i and j is a sequence
(i0, ε1, i1, . . . , εn, in), where {i0, . . . , in} ⊆ V and {ε1, . . . , εn} ⊆ E ∪ B, with i0 = i and in = j.
A path is directed if each edge εk follows the form ik−1 → ik for all k ∈ [n]. A cycle through node i
consists of a directed path from i to some node j and an additional edge j → i. For any node i ∈ V ,
the ancestor set is defined as anG(i) := {j ∈ V | a directed path from j to i exists in G}, while the
descendant set is given by deG(i) := {j ∈ V | a directed path from i to j exists in G}. The spouse
set of a node i is defined as spG(i) := {j ∈ V | j ↔ i ∈ B}. If i is both a spouse and an ancestor
of j, this creates a almost directed cycle. A mixed graph is called ancestral if it does not contain a
directed or an almost directed cycle. The strongly connected component of i, denoted scG(i), is the
intersection of its ancestors and descendants: scG(i) = anG(i)∩ deG(i). The district of a node i ∈ V
is defined as disG(i) = {j | j ↔ · · · ↔ i ∈ G or i = j}. We can apply these definitions to subsets
U ⊆ V by taking union of over the items of the subset, for instance, anG(U) = ∪i∈UanG(i). A vertex
set A ⊆ V is said to be barren if i ∈ A has no descendants in G that are in A, however, i may have
descendants in G not in A, that is, barrenG(A) = {i | i ∈ A; deG(i) ∩ A = {i}}. A subset A ⊆ V
is ancestrally closed if A contains all of its ancesters. We define A(G) := {A | anG(A) = A} as the
set of ancestrally closed set of ancestrally closed sets in G.
Definition A.1 (Collider). For a directed mixed graph G = (V, E ,B), a node ik ∈ V in a path
π = (i0, ε1, i1, ε2, . . . , in−1, εn, in) is called a collider if k ̸= 0, n (non-endpoint) and the two
edges εk, εk+1 have their heads pointed at i, i.e., the subpath (ik−1, εk, ik, εk+1, ik+1) is of the form
ik−1 → ik ← ik+1, ik−1 ↔ ik ← ik+1, ik−1 → ik ↔ ik+1, ik−1 ↔ ik ↔ ik+1. The node ik is
called a non-collider if ik is not a collider.

Note that the end points of a walk are always non-colliders. We now define the notion of d-separation
extended to DMGs.
Definition A.2 (d-separation). Let G = (V, E ,B) be a directed mixed graph and let C ⊆ V be a
subset of nodes. A path π = (i0, ε1, i1, ε2, . . . , in−1, εn, in) is said to be d-blocked given C if

1. π contains a collider ik /∈ anG(C)

2. π contains a non-collider ik ∈ C.

The path π is said to be d-open given C if it is not d-blocked. Two subsets of nodes A,B ⊆ V is said
to be d-separated given C if all paths between a and b, where a ∈ A and b ∈ B, is d-blocked given
C, and is denoted by

A
d

⊥
G
B | C.

If the underlying graph is acyclic, d-separation implies conditional independence. That is, for subsets
of nodes A,B,C ⊆ V ,

A
d

⊥
G
B | C =⇒ XA ⊥

pG
XB |XC ,

where ⊥pG denotes conditional independence, and pG denotes the observational distribution. This
is known as the directed global Markov property of G [49]. However, in general, cyclic graphs do
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Figure 4: (Left) Illustration of a directed mixed graph that disobeys directed global Markov property.
(Right) The graph on the right represents the graph G after the acyclification process.

not obey the directed global Markov property as shown by the counterexample below taken from
[36, 50].
Example A.3. Consider the SEM given by:

f1(X,Z) = Z1, f1(X,Z) = Z2, f3(X,Z) = X1X4 + Z3 f4(X,Z) = X2X3 + Z4,

and pZ is the standard normal distribution. One can check that X1 is not independent of X2 given
{X3, X4}. However, the X1 and X2 are d-separated given {X3, X4} in the graph corresponding to
the SEM (see Figure 4).

Forré and Mooij [49] introduced σ-separation as a generalization of d-separation to extend the directed
global Markov property to cyclic graphs. This concept was motivated by applying d-separation to the
acyclified version of the DMG. Before delving into σ-separation, we first define the acyclification
procedure of a directed mixed graph, following [36].
Definition A.4 (Acyclification of a directed mixed graph). Let G = (V, E ,B) denote a directed mixed
graph, the acyclification of G maps G to the acyclified graph acy(G) = (V, Ê , B̂), where j → i ∈ Ê
if and only if j ∈ paG(scG(i)) \ scG(i), and i ↔ j ∈ B̂ if and only if there exists i′ ∈ scG(i) and
j′ ∈ scG(j) such that i′ = j′ or i′ ↔ j′ ∈ B.

It is important to note that the existence of a acylified graph for an SEM relies on the solvability of
the SEM over all the strongly connected components of the DMG corresponding to the SEM. This
is to say that we have a solution for XscG(i) given Xpa(scG(i))\scG(i) and ZscG(i). This is indeed the
case as we assume that the forward map fx is invertible for the all the SEMs under consideration,
see Bongers et al. [36] for more details. Figure 4 illustrates the acyclification process for the graph
corresponding to Example A.3.
Definition A.5 (σ-separation). Let G = (V, E ,B) be a directed mixed graph and let C ⊆ V be a
subset of nodes. A path π = (i0, ε1, i1, ε2, . . . , in−1, εn, in) is said to be σ-blocked given C if

1. the first node of π, i0 ∈ C or its last node in ∈ C, or

2. π contains a collider ik /∈ anG(C)

3. π contains a non-collider ik ∈ C that points towards a neighbor that is not in the same
strongly connected component as ik in G, i.e, such that ik−1 ← ik in π and ik−1 /∈ scG(ik),
or ik → ik+1 in π and ik+1 /∈ scG(ik).

The path π is said to be σ-open given C if it is not σ-blocked. Two subsets of nodes A,B ⊆ V is said
to be σ-separated given C if all paths between a and b, where a ∈ A and b ∈ B, is σ-blocked given
C, and is denoted by

A
σ

⊥
G
B | C.

Note that σ-separation reduces to d-separation for acyclic graphs, that is, when scG(i) = {i} for all
i ∈ V . The following result in [49] relates σ-separation and d-separation.
Proposition A.6 ([49]). Let G = (V, E ,B) be a directed mixed graph, then for A,B,C ⊆ V ,

A
σ

⊥
G
B | C ⇐⇒ A

d

⊥
acy(G)

B | C.
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Figure 5: Illustration of the augmented graph GI corresponding to the set of interventional targets
I = {∅, {X3}, {X4}}. do({X3}) and do({X3}) corresponds to the graph obtained after hard
interventions on X3 and X4 respectively. The augmented graph here is the union of the graphs G,
do({X3}), do({X4}) along with the context variables.

Using σ-separation we can now define the general directed global Markov property.
Definition A.7 (General directed global Markov property [49]). Let G = (V, E ,B) be a directed
mixed graph and pG denote the probability density of the observations X . The probability density pG
satisfies the general directed global Markov property if for A,B,C ⊆ V

A
σ

⊥
G
B | C =⇒ XA ⊥

pG
XB |XC ,

that is, XA and XB are conditionally independent given XC .

A.2 Joint Causal Modelling and Markov properties

In order to incorporate multiple interventional settings into a single causal modeling framework, we
follow the joint causal model introduced by [29], where we augment the system with a set of context
variables CI = (C1, . . . ,CK) each corresponding to a non-empty interventional setting. In this case,
Ck = ∅ for all k = 1, . . . ,K corresponds to the observational setting. We construct an augmented
graph, denoted by GI consisting of both the system variables X and the context variables CI , such
that the chG(Ck) = Ik, and no context variable has any parent or a spouse. Figure 5 illustrates the
augmented graph for the graph from Example A.3 and the intervention sets I = {∅, {X3}, {X4}}.
The new system containing both the observed variables and the context variables is called the meta
system. Finally, given a set of interventional targets Ik ⊆ V and the corresponding context variable
Ck, the structural equations governing the observations X has the following form:

F̃i(XpaG(i),C
I
paIG(i), Zi) =

{
(Ck)i, if Xi ∈ Ik,

Fi(XpaG(i), Zi), if Xi /∈ Ik.

We call the distribution over the context variables p(CI) the context distributions and as noted by
Mooij et al. [29], the behavior of the system is usually invariant to the context distribution. We
assume access to the context distribution as the interventional settings are known apriori. Note
that, the observational distribution corresponds to pGI (X | C1 = · · · = CK = ∅). Similarly, the
interventional distribution for the interventional setting Ik corresponds to pGI (X | Ck = ξIk ,C−k =
∅), i.e.,

pGI (X | Ck = ξIk ,C−k = ∅) = pdo(Ik)(G)(X)

Furthermore,
pGI (CI ,X) = pGI (CI)pGI (X | CI). (18)

Recall that for the interventional setting Ik, the probability density function governing the observations
X is given by (6), which we repeat here for convenience

pdo(Ik)(G)(X) = pI(C)pZ

([
f (Ik)x (X)

]
Uk

)∣∣det (J
f
(Ik)
x

(X)
)∣∣,

Definition A.8. Let G = (V, E ,B) be a directed mixed graph, and I = {Ik}Kk=0 with I0 = ∅ be
a family of interventional targets. LetMI(G) denote the set of positive densities pGI : R2d → R
such that pGI is given by (18) for all F : R2d → Rd, with Fi(X,Z) = Fi(XpaG (i), Zi), such that
the resulting forward map fx is unique and invertible, and ΣZ ≻ 0 and (ΣZ)ij ̸= 0 if and only if
i↔ j ∈ B.
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Proposition A.9. For a directed mixed graph G = (V, E ,B) and a family of interventional targets
I = {Ik}Kk=0 such that I0 = ∅, let p ∈MI(G), then p satisfies the general directed global Markov
property relative to GI .

Proof. For an DMG G and a choice of F : R2d → Rd such that fx is unique and invertible and Σ ≻ 0,
the structural equations are uniquely solvable with respect to each strongly connected component
of G. Morover, the addition of context variables in the augmented graph does not introduce any
new cycles. Therefore the meta system forms a simple SCM. Thus, from Theorem A.21 in [36], the
distribution pGI is unique and it satisfies the general directed global Markov property.

We now define the notion of interventional Markov equivalence class for DMGs based on the set of
distribution induced by them.
Definition A.10 (I-Markov Equivalence Class). Two directed mixed graphs G1 and G2 are I-Markov
equivalent if and only ifMI(G1) =MI(G2), denoted as G1 ≡I G2. The set of all directed mixed
graphs that are I-Markov equivalent to G1 is the I-Markov equivalence class of G1, denoted as
I-MEC(G1).

From Proposition A.6, for a DMG G and a family of interventional targets I = {Ik}Kk=0, any
σ-separation statement in GI translates to a d-separation statement in the acyclified graph acy(GI).
Consequently, the acyclified graph acy(GI) is equivalent to the augmented graph GI . Furthermore,
by the results of [51], pGI admits a factorization, as formalized in the theorem below.
Theorem A.11 ([51]). A probability distribution p obeys the directed Markov property for an acyclic
directed mixed graph G if and only if for every A ∈ A(G),

p(XA) =
∏

H∈[A]G

p(XH |Xtail(H)) (19)

where [A]G denotes a partition of A into sets {H1, . . . ,Hk}.

Each term in the factorization above is of the form p(XH | XT ), H,T ⊆ V , and H ∩ T = ∅.
Following Richardson [51], Lauritzen and Jensen [52] we refer to H as the head of the term
p(XH |XT ), and T as the tail. An ordered pair of sets (H,T ) form the head and tail of the factor
associated with G if and only if all of the following conditions hold:

1. H = barrenG(anG(H)),
2. If every nodes h ∈ H is connected via a path in the graph obtained by removing all the

directed edges in the graph G when restricted to the nodes anG(H), and
3. T = (disanG(H) \H) ∪ paG(disanG(H)).

Proposition A.12. Let G = (V, E ,B) be a directed mixed graph and I = {Ik}Kk=0 be a family of
interventional targets. The set of interventional distributions pGI ∈MI(G) if and only if pGI admits
a factorization of the form given by (19).

Proof. Since any pGI ∈ MI(G) is also Markov to acy(GI), the proposition above is a direct
implication of applying of Theorem 19 on acy(GI).

A.3 Proof of Theorem 2

We now present the main result of this paper. Recall the score function introduced in Section 3.2,

SI(G) := sup
ϕ

K∑
k=1

E
X∼p(k)

log pdo(Ik)(G)(X)− λ|G|,

where p(k) is the data-generating distribution for Ik ∈ I, and ϕ = {θ,ΣZ} represents the set of
all model parameters. In the context of the meta system, since we assume access to the context
distribution, the score function above is equivalent to the following score:

SI(G) := sup
ϕ

E
(X,C)∼p∗

I

log pGI (X,C | ϕ)− λ|G|,
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where pGI (X,C | ϕ) is given by (18) for a specific choice of ϕ, and p∗I denotes the joint ground-
truth distribution for the observed and the context variables. We define PI(G) as the set of all
distributions pGI (X,C | ϕ) that can be expressed by the model specified by equations (5) and (8).
That is,

PI(G) := {p | ∃ϕ s.t p = pGI (· | ϕ)}. (20)

From the above definition it is clear that PI(G) ⊆ MI(G). Theorem 2 relies on the following set
of assumptions. The first one ensures that the model is capable of representing the ground truth
distribution.
Assumption A.13 (Sufficient Capacity). The joint ground truth distribution p∗I is such that p∗I ∈
PI(G∗), where G∗ is the ground truth graph.

In other words, there exists a ϕ such that p∗I = pGI (· | ϕ). The second assumption generalizes the
notion of faithfulness assumption to the interventional setting.
Assumption A.14 (I-σ-faithfulness). Let V = (X,CI), for any subset of nodes A,B,C ⊆ V∪CI ,
and Ik ∈ I

A
σ

̸⊥
GI

B | C =⇒ VA ̸⊥
pGI

VB | VC .

The above assumption implies that any conditional independency observed in the data must imply a
σ-separation in the corresponding interventional ground truth graph.
Assumption A.15 (Finite differential entropy). For I = {Ik}Kk=0,

|Ep∗
I
log p∗I(X,C)| <∞.

The above assumption ensures that the hypothetical scenario where S(G∗) and S(G) are both infinity
is avoided. This is formalized in the lemma below taken from [15].
Lemma A.16 (Finiteness of the score function [15]). Under assumptions A.13 and A.15, |SI(G)| <
∞.

From the results of [15], we can now express the difference in score function between G∗ and G as
the minimization of KL diverengence plus the difference in the regularization terms.
Lemma A.17 (Rewritting the score function [15]). Under assumptions A.13 and A.15, we have

S(G∗)− S(G) = inf
ϕ

DKL(p
∗
I∥pGI (· | ϕ)) + λ(|G| − |G∗|).

We will now prove the following technical lemma (adapted from [15]) which we will be used in
proving Theorem 2.
Lemma A.18. Let G = (V, E ,B) be a directed mixed graph, for a set of interventional targets
I = {Ik}Kk=0, and p∗ /∈MI(G)), then

inf
p∈MI(G))

D(p∗∥p) > 0.

Proof. Let V = (X,CI), from theorem A.11, any p ∈MI(G)) admits a factorization of the form

p(V ) =
∏

H∈[V]G

p(VH | VT ).

Let us define a new distribution p̂ as follows:

p̂(V ) =
∏

H∈[V]G

p̂(VH | VT ),

where

p̂(VH | VT ) =
p∗(VH ,VT )

p∗(VT )
.

18



From proposition A.12, we see that p̂ ∈MI(G)) and hence p ̸= p̂. We will show that

p̂ = arg min
p∈MI(G))

DKL(p
∗∥p).

For an arbitrary p ∈MI(G)), consider the following:

Ep∗ log
p̂(V )

p(V )
= Ep∗

∑
H∈[V]G

log
p∗(VH | VT )

p(VH | VT )
(21)

=
∑

H∈[V]G

Ep∗ log
p∗(VH | VT )

p(VH | VT )
. (22)

In the equation above, we leverage the linearity of expectation, which holds under Assumption A.15,
ensuring that we don’t sum infinities of opposite signs. We now show that each term in the right hand
side of the above equality is an expectation of KL divergence which is always in [0,∞).

Ep∗ log
p∗(VH | VT )

p(VH | VT )
=

∫
p∗(VT )

∫
p∗(VH | VT ) log

p∗(VH | VT )

p(VH | VT )
dVHdVT (23)

=

∫
p∗(VT )DKL

(
p∗(· | VT )∥p(·∥VT )

)
dVT . (24)

Thus, Ep∗ log p̂(V )
p(V ) ∈ [0,∞).

We now show that p̂ = argminp∈M(do(Ik)(G)) DKL(p
∗∥p):

DKL(p
∗∥p) = Ep∗ log

p∗(V )

p̂(V )

p̂(V )

p(V )
(25)

= Ep∗ log
p∗(V )

p̂(V )
+ Ep∗ log

p̂(V )

p(V )
(26)

= DKL(p
∗∥p̂) + Ep∗ log

p̂(V )

p(V )
(27)

≥ DKL(p
∗∥p̂) > 0. (28)

Since the expectations in (26) are both in [0,∞), splitting the expectation is valid. The very last
inequality holds since p∗ ̸= p̂. Thus,

inf
p∈MI(G))

D(p∗∥p) ≥ DKL(p
∗∥p̂) > 0.

We are now ready to prove Theorem 2. Recall,

Theorem 2. Let I = {Ik}Kk=0 be a family of interventional targets, let G∗ denote the ground truth
directed mixed graph, p(k) denote the data generating distribution for Ik, and Ĝ := argmaxG S(G).
Then, under the Assumptions 1, A.13, A.14, and A.15, and for a suitably chosen λ > 0, we have that
Ĝ ≡I G∗. That is, Ĝ is I-Markov equivalent to G∗.

Proof. It is sufficient to show that for G /∈ I-MEC(G∗), the score function of Ĝ is strictly lower
than the score function of G∗, i.e., S(G∗) > S(G). Since G /∈ I-MEC(G∗) and p∗I ∈ MI(G∗) (by
Assumption A.13), there must exist subsets of nodes A,B,C ⊆ V ∪CI such that

A
σ

⊥
G
B | C and A

σ

̸⊥
G∗

B | C.

If no such subsets exist, then G and G∗ impose the same σ -separation constraints and thus induce
the same set of distributions. This would imply that G ∈ I-MEC(G∗), contradicting our assumption.
Since p∗I ∈ MI(G∗)), it must be true that VA ̸⊥p(k) VB | VC (Assumption A.14). Therefore pI∗
doesn’t satisfy the general directed Markov property with respect to GI and hence p∗I /∈MI(G).
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For convenience, let
η(G) := inf

ϕ
DKL(p

∗
I∥pGI (· | ϕ)).

Note that
η(G) = inf

ϕ
DKL(p

∗
I∥pGI (· | ϕ)) ≥ inf

p∈MI(G)
DKL(p

(k)∥p) > 0,

where we use Lemma A.18 for the final inequality. Thus, from Lemma A.17

S(G∗)− S(G) = η(G) + λ(|G| − |G∗|) (29)

Following [15], we now show that by choosing λ sufficiently small, the above equation is stictly
positive. Note that if |G| ≥ |G∗| then S(G∗)− S(G) > 0. Let G+ := {G | |G| < |G∗|}. Choosing λ

such that 0 < λ < minG∈G+
η(G)

|G∗|−|G| we see that:

λ < min
G∈G+

η(G)
|G∗| − |G|

(30)

⇐⇒ λ <
η(G)

|G∗| − |G|
∀G ∈ G+ (31)

⇐⇒ λ(|G∗| − |G|) < η(G) ∀G ∈ G+ (32)

⇐⇒ 0 < η(G) + λ(|G| − |G∗|) = S(G∗)− S(G) ∀G ∈ G+. (33)

Thus, every graph outside of the general directed Markov equivalence class of (G∗)I has a strictly
lower score.

A.4 Characterization of Equivalence Class

Let G = (V, E ,B) be a directed mixed graph, and consider a family of interventional targets
I = Ik

K
k=0 with I0 = ∅. From Proposition A.6, for any graph G1 ∈ I-MEC(G), the corresponding

augmented graph GI1 is equivalent to the acyclification acy(GI) of GI . Several prior works have
studied the characterization of equivalence classes of acyclic directed mixed graphs (ADMGs),
including [53, 30, 54]. We now provide a graphical notion of the I-Markov equivalence class of a
DMG G. A graph G is said to be maximal if there exists no inducing path (relative to the empty set)
between any two non-adjacent nodes. An inducing path relative to a subset L is a path on which
every non-endpoint node i ∈ L is a collider on the path and every collider is an ancestor of an
endpoint of the path. A Maximal Ancestral Graph (MAG) is one that is both ancestral and maximal.
Given an ADMG acy(GI), it is possible to construct a MAG over the variable set V = (X,CI)
that preserves both the independence structure and ancestral relationships encoded in acy(GI);
see [55] for details. We denote MAG(acy(GI)) to mean MAG that is constructed from acy(GI).
Therefore all the independencies encoded in acy(GI) is also present in MAG(acy(GI)). Before
present the condition for MAG equivalence, we introduce the notion of discriminating path. A path
π = (i0, ε1, . . . , in−1, εn, in) in acy(GI) is called a discriminating path for in−1 if (1) π includes at
lest three edges; (2) in−1 is a non-endpoint node on π, and is adjacent to in on π; and (3) i0 and in
are not adjacent, and every node in between i0 and in−1 is a collider on π and is a parent of in. The
following theorem from Spirtes and Richardson [53] characterizes the equivalence of MAGs.

Theorem A.19 (Spirtes and Richardson [53]). Two MAGs G1 and G2 are Markov equivalent if and
only if:

1. G1 and G2 have the same skeleton;

2. G1 and G2 have the same unshielded colliders; and

3. if π forms a discriminating path for i in G1 and G2, then i is a collider on π if and only it is
a collider on π in G2.

Therefore, from Proposition A.6 and Theorem A.19, two DMGs G1 and G2 are equivalent if and only if
MAG(acy(GI1 )) and MAG(acy(GI2 )) satisfying the conditions of Theorem 2, i.e., MAG(acy(GI1 ))
and MAG(acy(GI2 )): (i) have the same skeleton, (ii) same unshielded colliders, and (iii) same
discriminating paths with consistent colliders.
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B Implementation Details

In this section we provide the implementation details of DCCD-CONF and the baseline models along
with the details of the experimental setup.

B.1 Hutchinson trace estimator for computing log determinant of the Jacobian

Computing the log determinant of the Jacobian matrix present in (6) poses a significant challenge.
However, following Behrmann et al. [40], in Section 3.3.1 showed that the log-determinant of the
Jacobian can be estimated using the following estimator

log
∣∣det (J

f
(Ik)
x

(X)
)∣∣ = E

n∼pN(N)

[
n∑

m=1

(−1)m+1

m
·
Tr

{
Jm
Ukgx

(X)
}
− Tr

{
Jm
Ukgz

(Z)
}

pN(ℓ ≥ m)

]
.

The estimator above still has a major drawback: computing the Tr(JUkg) still requiresO(d2) gradient
calls to compute exactly. Fortunately, Hutchinson trace estimator [44] can be used to stochastically
approximate the trace of the Jacobian matrix. This then results in the following estimator that can be
computed efficiently via reverse-mode automatic differentiation

log
∣∣det (J

f
(Ik)
x

(X)
)∣∣ = E

n∼pN(N),V ∼N (0,I)

[
n∑

m=1

(−1)m+1

m

×
V ⊤{Jm

Ukgx
(X)

}
V − V ⊤{Jm

Ukgz
(Z)

}
V

pN(ℓ ≥ m)

]
. (34)

B.2 Parameter update via score maximization

As described in Section 3, the model parameters are updated in two stages. In the first stage, the
parameters of the neural networks and the Gumbel-Softmax distribution, used to sample adjacency
matrices, are updated via backpropagation using stochastic gradient descent. Since (5) forms an
implicit block of an implicit normalizing flow, following, we directly estimate the gradients of Ŝ(B)
with respect to x and ϕ = (θ,B). The gradient computation involves two terms: ∂

∂(·) log det(I +

Jgx(x,ϕ)) and ∂Ŝ
∂z

∂z
∂(·) , where (·) is a placeholder for x and ϕ. From [38, 40], we use the following

unbiased estimators for the gradients:

∂ log det(I+ Jgx(x,ϕ))

∂(·)
= E

n∼p(N),V ∼N (0,I)

[( n∑
k=0

(−1)k

P (N ≥ k)
V ⊤Jk

)
∂Jgx(x,ϕ)

∂(·)
V

]
. (35)

On the other hand, ∂Ŝ(B)
∂z

∂z
∂(·) can be computed according to the implicit function theorem as follows:

∂Ŝ(B)

∂z

∂z

∂(·)
=
Ŝ(B)

∂z
J−1
Gz

(z)
G(x, z,ϕ)

∂(·)
, (36)

where Gz(z) = gz(z,ϕ) + z, and recall that G(x, z,ϕ) = gx(x,ϕ) + x + gz(z,ϕ) + z. See
[38] for more details. The procedure SGUPDATE shown in Algorithm 1 performs the gradient
computation in (35) and (36).

In the second stage, the entries of the covariance matrix of the endogenous noise distribution are
updated column-wise by solving a sequence of Lasso optimization problems. The complete parameter
update procedure is summarized in Algorithm 1.

B.3 DCCD-CONF and the baselines code details

DCCD-CONF. We implemented our framework using the libraries Pytorch and Scikit-learn
in Python and the code used in running the experiments can be found in the codes folder within the
supplementary materials. We plan to make the code publicly available on GitHub upon publication of
the paper.
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Algorithm 1 PARAMETER UPDATE

Require: Family of interventional targets I = {Ik}Kk=1, interventional dataset {x(i,k)}Nk,K
i=1,k=1,

regularization coefficients λ and ρ.
Ensure: Learned neural network parameters θ̂, graph structure parameters B̂, confounder-noise

distribution parameters Σ̂Z .
1: Initialize the parameters: θ(0) ∼ pθ(θ), B(0) ∼ pB(B), and ΣZ = I
2: Iteration counter: t = 0
3: while NOT CONVERGED do
4: for k = 1 to K do
5: t← t+ 1
6: W← (Σ

(t)
Z )Uk,Uk

7: Compute score function L̃(B(t),θ(t),W, Ik)

8: B(t+1),θ(t+1) ← SGUPDATE(L̃,B(t),θ(t))
9: for j = 1 to d do

10: Push j-th row and column in W to the end
11: β ← lasso(W11, s12, ρ)
12: w12 ←W11β
13: end for
14: (Σ

(t+1)
Z )Uk,Uk

←W
15: end for
16: end while
17: θ̂, B̂, Σ̂Z ← θ(t),B(t),Σ(t)

Z

return θ̂, B̂, Σ̂Z

Starting with an initialization of the model parameters (θ(0),B(0),Σ
(0)
Z ), we iteratively alternate

between maximizing the score function with respect to (θ(t),B(t)) and Σ
(t)
Z , as described in Algo-

rithm 1. Standard stochastic gradient updates are used for (θ(t),B(t)), while coordinate gradient
descent, implemented via the Scikit-learn library, is applied to Σ

(t)
Z . For modeling the causal

function gx, we follow the setup of Sethuraman et al. [27], employing neural networks (NNs) with
dependency masks parameterized by a Gumbel-softmax distribution. The log-determinant of the
Jacobian is computed using a power series expansion combined with the Hutchinson trace estimator.
To mitigate bias from truncating the power series expansion, the number of terms is sampled from a
Poisson distribution, as detailed in Section 3.3 and Appendix B.1. The final objective is optimized
using the Adam optimizer [56].

The learning rate in all our experiments was set to 10−2. The neural network models used in our
experiments contained one multi-layer perceptron layer. No nonlinearities were added to the neural
networks for the linear SEM experiments. We used tanh activation for the nonlinear SEM experi-
ments and for the experiments on the perturb-CITE-seq data set. The graph sparsity regularization
constant λ was set to 10−3 for all the experiments. The sparsity inducing regularization constant for
the inverse covariance matrix of the confounder distribution, ρ, was set to 10−2 in all the experiments.
The models were trained and evaluated on NVIDIA RTX6000 GPUs.

Baselines. For NODAGS-Flow, we used the code provided by authors [27] available at https:
//github.com/Genentech/nodags-flows. The default values were set for the hyperparameters.
We implemented the LLC algorithm based on the details provided in [26]. The implementation
can be found within the codes/baselines folder in the supplementary materials. For FCI, we
used the implementation that is available in the causallearn python library (https://github.
com/py-why/causal-learn). For DCDI, we used the codebase provided by the authors [15],
available at https://github.com/slachapelle/dcdi. The default hyperparameters were used
while training and evaluating the model.

B.4 Experimental setup

In this section, we describe how the data sets were generated for the various experiments conducted.
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B.4.1 Synthetic Experiments

We begin by sampling a directed graph using the Erdős-Rényi (ER) random graph model with an
edge density of 2 unless specified otherwise, which determines the directed edges in the DMG
G. Next, we generate a random matrix and project it onto the space of positive definite matrices
to obtain the confounder covariance matrix ΣZ , setting the maximum exogenous noise standard
deviation to 0.5 unless specified otherwise. The nonzero off-diagonal entries of ΣZ correspond
to the bidirectional edges in G. For the linear SEM, edge weights are sampled uniformly from
Unif((−0.9,−0.2) ∪ (0.2, 0.9)). In all experiments except those on non-contractive SEMs, the edge
weight matrix is rescaled to ensure a Lipschitz constant of less than one. For nonlinear SEMs, we
apply a tanh nonlinearity to the linear system defined by the edge weights, i.e.,

x = tanh(W⊤x+ z),

where W is the weighted adjacency matrix.

Impact of Confounder Count In this experiment, the number of observed nodes in the graph
is fixed at d = 10 . Training data consists of combination of observational data and single-node
interventions over all nodes, i.e., I = ∅ ∪ {{i} | i ∈ [d]}, with 1000 samples per interventional
setting. The confounder ratio (number of confounders divided by the number of nodes) is varied from
0.2 to 0.8.

Scaling with Number of Nodes Here, we fix the confounder ratio at 0.4. The total number of
nodes in the graph is varied from 10 to 80. As in the previous setup, training data consists of
combination of observational data and single-node interventions across all nodes, with 1000 samples
per interventional setting.

Scaling with Interventions We fix d = 10 and set the confounder ratio to 0.4. The number of
interventions during training varies from 0 to d. Zero interventions corresponds to observational data.
When fewer than d interventions are provided, the intervened nodes are selected arbitrarily. Each
interventional setting consists of 1000 samples.

Non-Contractive SEM In this case, we explicitly enforce a non-contractive causal mechanism F
by rescaling edge weights to ensure that the Lipschitz constant of the edge weight matrix exceeds
one. We set d = 10 and provide observational data and single-node interventions across all nodes,
with 1000 samples per intervention. The confounder ratio varies between 0.2 and 0.8.

Scaling with Training Samples To examine the sample requirements of DCCD-CONF, we set the
confounder ratio to 0.4. Training data consists of observational data and single-node interventions
over all nodes, while the number of samples per intervention is varied from 500 to 2500.

Scaling with outgoing edge density In this case, the outgoing edge density of the ER random
graphs is varied from 1 to 4. The confounder ratio is set to 0.4 and the number of nodes d = 10. The
training data consists of observational data and single node experiments over all the nodes in the
graph.

Scalinf with noise standard deviation In this setting, we vary the maximum noise standard
deviation between 0.2 and 0.8. The confounder ratio is set to 0.4 and the number of nodes d = 10.
The training data consists of observational data and single node experiments over all the nodes in the
graph.

Evaluation Metrics Across all experiments, we use Structural Hamming Distance (SHD) to
evaluate the accuracy of the estimated directed edges relative to the ground truth. SHD measures the
number of modifications (edge additions, reversals, and deletions) required to match the estimated
graph to the ground truth. For DCCD-CONF and NODAGS-Flow we fix a threshold value of 0.8 for
the estimated adjacency matrix. The recovery of bidirectional edges is assessed using the F1 score,
which is defined as:

F1 score = 2
precision× recall
precision + recall
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Figure 6: Performance comparison between DCCD-CONF and baseline methods on causal graph
recovery and confounder identification, evaluated across varying model parameters. Each subplot
details a specific experimental setting.

where
precision =

TP

TP + FP
, recall =

TP

TP + FN
and TP, FP, FN denote true positives, false positives, and false negatives, respectively. We use a
threshold of 0.01 for the estimated covariance matrix to identify the bidirectional edges.

Additionally, we also measure the performance of DCCD-CONF and the baselines using Area
Under Precision-Recall Curve (AUPRC) as the error metric. AUPRC computes the area under the
precision-recall curve evaluated at various threshold values (the higher the better).

B.4.2 Gene Perturbation Data set

The dataset was obtained from the Single Cell Portal of the Broad Institute (accession code SCP1064).
Following the experimental setup of Sethuraman et al. [27], we filtered out cells with fewer than
500 expressed genes and removed genes expressed in fewer than 500 cells. Due to computational
constraints, we selected a subset of 61 perturbed genes (Table 2) from the full genome. The three
experimental conditions—co-culture, IFN-γ, and control—were partitioned into separate datasets,
and models were trained and evaluated on each condition independently.

Table 2: The list of chosen genes from Perturb-CITE-seq dataset [48].

ACSL3 ACTA2 B2M CCND1 CD274 CD58 CD59 CDK4 CDK6
CDKN1A CKS1B CST3 CTPS1 DNMT1 EIF3K EVA1A FKBP4 FOS
GSEC GSN HASPIN HLA-A HLA-B HLA-C HLA-E IFNGR1 IFNGR2
ILF2 IRF3 JAK1 JAK2 LAMP2 LGALS3 MRPL47 MYC P2RX4
PABPC1 PAICS PET100 PTMA PUF60 RNASEH2A RRS1 SAT1 SEC11C
SINHCAF SMAD4 SOX4 SP100 SSR2 STAT1 STOM TGFB1 TIMP2
TM4SF1 TMED10 TMEM173 TOP1MT TPRKB TXNDC17 VDAC2

C Additional Results

C.1 Additional synthetic experiments

Experiments on Non-contractive DAGs. We evaluated the performance of DCCD-CONF and
baseline methods on non-contractive SEMs, where the ground truth DMG is acyclic. While DCCD-
CONF assumes a contractive causal mechanism, we adapt it for non-contractive settings using the
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Figure 7: Comparison of DCCD-CONF and baseline methods on causal graph recovery and con-
founder identification, measured using AUPRC across varying model parameters.

preconditioning trick proposed by Sethuraman et al. [27]. This approach introduces a learnable
diagonal preconditioning matrix Λ , transforming the causal mechanism as follows:

ĝx = Λ−1 ◦ gx ◦Λ,

where gx , as defined in (8), remains contractive (see Sethuraman et al. [27] for details). We vary the
confounder ratio, and the results are summarized in Figure 6a. As shown in Figure, DCCD-CONF
effectively learns the ADMG even in non-contractive SEM settings, demonstrating competitive
performance against the baselines.

Performance comparison vs. sample size We also assess the sample requirements of DCCD-
CONF. Figure 6b summarizes the results obtained by varying the number of samples per intervention.
As shown in the figure, when the confounder ratio is 0.4, DCCD-CONF achieves low SHD even with
500 samples per intervention and attains near-perfect accuracy from 2000 samples onward. However,
performance declines slightly as the confounder ratio increases.

Performance comparison vs. max endogenous noise st. deviation In this setting, we compare
DCCD-CONF with the baseline by varying the maximum standard deviation of the endogenous noise
terms between 0.2 and 0.8, the results are summarized in Figure 6c. DCCD-CONF outperforms the
baselines for all noise standard deviations. However, the performance of the models does deteriorate
slightly as the noise standard deviation increases.

Performance comparison vs. outgoing edge density In this case, the expected number of outgoing
edges from each node is varied between 1 and 4. This affects the sparsity of the resulting graph. The
results are summarized in Figure 6d. As seen from Figure 6d, DCCD-CONF still outperforms the
baselines, even though the performance of all the models worsens as the edge density increases.
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Figure 8: Performance comparison between DCCD-CONF and FCI-JCI with respect to modified
SHD as the error metric. The number of observed nodes was set to d = 5. For the left plot, all single
node interventions along with the observational data were provided as training data. For the right plot,
observational data and interventions over two of the nodes (randomly chosen) were used as training
data.

C.2 Additional performance metrics

In addition to SHD for directed edge recovery and F1 score for bi-directional edge recovery. We
also AUPRC to compare DCCD-CONF and the baseline for all of the experimental settings stated in
Appendix B.4.1. The results are summarized in Figure 7. Overall, DCCD-CONF performs better than
LLC on nonlinear SEMs across all the settings, while achieving perfect AUPRC scores in several
cases.

C.3 Comparison with FCI-JCI

We also compare the performance of DCCD-CONF with FCI-JCI [29], which is an extension of
FCI algorithm that is capable of handling multiple contexts (in this case interventional settings).
FCI-JCI outputs a Partial Ancestral Graph (PAG), which is a graph structure that represents the
equivalence class of MAGs. We define a modified SHD score in order to check if the DMG
estimated by DCCD-CONF belongs to the same equivalence class of the ground truth DMG. To
that end, we convert the ground-truth DMG and the estimated DMG to their augmented DMGs
and then construct the MAG of the acyclified version of the augmented DMGs. The modified SHD
score then computes the discrepancies in the conditions of Theorem A.19, i.e., we count: (i) the
number of extra edges (N1) using the skeletons of the estimated MAG and ground truth MAG, (2)
number of mismatched unshielded colliders (N2), and (3) discrepancies in the discriminating paths
(N3). Similarly, for FCI-JCI, we count the disagreements between the ground-truth MAG and the
estimated PAG, i.e., mismatch in skeleton (N1), mismatch in unshielded colliders (N2), invariant
edge orientation discrepancies (N3). Finally, the modified SHD = N1 + N2 + N3. We compare
DCCD-CONF and JCI-FCI over two different settings: (i) the training data consists of observational
data and single node interventions over all the nodes in the graph, and (ii) the training data consists
of observational data and interventions over 2 nodes (randomly chosen) in the graph. Due to the
complexity of computing the modified SHD (as it involves iterating over the discriminating paths
and inducing paths) we fix the number of observed nodes to be d = 5. In the both the cases, the
confounder ratio is varied between 0.2 and 0.8, and nonlinear SEM is used to generate the data. The
results are summarized in Figure 8.

As seen from Figure 8, DCCD-CONF outperforms FCI-JCI in the both the settings. However, the
performance does decrease as the number of training interventions reduces. We attribute this to the
increase sample requirements as the number of training interventions goes down.
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