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Abstract—In this paper, we propose a general framework for
designing sensing matrix A ∈ Rd×p, for estimation of sparse
covariance matrix from compressed measurements of the form
y = Ax + n, where y,n ∈ Rd, and x ∈ Rp. By viewing
covariance recovery as inference over factor graphs via message
passing algorithm, ideas from coding theory, such as Density
Evolution (DE), are leveraged to construct a framework for
the design of the sensing matrix. The proposed framework can
handle both (1) regular sensing, i.e., equal importance is given
to all entries of the covariance, and (2) preferential sensing, i.e.,
higher importance is given to a part of the covariance matrix.
Through experiments, we show that the sensing matrix designed
via density evolution can match the state-of-the-art for covariance
recovery in the regular sensing paradigm and attain improved
performance in the preferential sensing regime. Additionally, we
study the feasibility of causal graph structure recovery using
the estimated covariance matrix obtained from the compressed
measurements.

I. INTRODUCTION

In this work, we study the feasibility of recovering the
covariance matrix and the underlying causal structure of
unknown set of variables x = (x1, . . . , xp), by collecting
observations through a linear measurement system of the form,

y = Ax+ n, (1)

where y ∈ Rd is of a lower dimension than x ∈ Rp. The
causal semantics of x can be represented using a directed
graph where the edges encode the dependencies between the
variables. The problem of recovering the causal structure is
then equivalent to the graph structure recovery, in other words,
recovery of the edge set E.

Graph structure recovery has been a problem of interest
in the last few decades within the machine learning commu-
nity. It is well known that structure recovery is an NP-hard
problem, [1], and in general it cannot be uniquely identified
[2]. Nevertheless, attempts have been made to recover the
structure of the graphical model under various assumptions on
the underlying probability distribution governing the system.
Additive Noise Models (ANM) have gained a lot of traction
in recent years due to their analytic simplicity. Moreover, it
has been shown that under some assumptions on the noise
distribution, the graph structure can be uniquely identified. Of
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particular interest is the setting where the noise distribution
is Gaussian, for which there exist polynomial time algorithms
for structure recovery [3].

However, the aforementioned solutions assume direct access
to the observational data which may not be practical in
certain applications [4], making it an expensive task to recover
the structure of the underlying graph, especially in high
dimensions. Our work differs from the existing methods by
considering the scenario where the graph structure is recovered
from compressed measurements y instead of directly observ-
ing x. The crux of our approach relies on density evolution
analysis of the message-passing algorithm, also known as
Belief propagation, min-product, or max-sum. The algorithm
was independently developed in different fields in the last
century. In 1935, Bethe [5] used it to approximately compute
the partition function. [6] developed belief propagation in 1988
to perform exact inference in Acyclic Bayesian Networks.

Related Work. Sparse vector recovery from compressed
measurements has been studied quite extensively with several
sensing matrices being proposed in the literature [7]–[9]. Over
time, Gaussian sensing matrices have become a popular choice
for sparse vector recovery. However, [9] showed that the
gaussian sensing matrix is not a very good candidate for the
recovery of sparse matrices. [10] showed the use of binary
matrices, in particular, adjacency of δ-left regular bipartite
graph for sparse vector recovery. [11] built upon the work done
by [10] and proved that adjacency of δ-left regular bipartite
graphs can be used for recovery of sparse matrices.

In the 1960s, [12] proposed a sum-product algorithm to
decode low-density parity check (LDPC) codes over graphs,
which was forgotten for decades and later reinvented along
with density evolution to design LDPC codes achieving chan-
nel capacity. [13]–[15] analyzed sparse sensing matrices based
on spatial coupling using DE for sparse vector recovery. [16]
employed density evolution and developed a framework for
designing sensing matrices for regular as well as preferential
recovery of sparse vectors. For a better understanding of the
usage of message passing and density evolution for signal
recovery, we refer the readers to [5], [15].

Graph Structure Recovery. Structure recovery methods
for directed graphs can broadly be divided into two categories:
(1) Independence test-based, and (2) score-based methods.



Independence test-based methods [17] typically involves com-
puting the conditional independence between any two nodes
in the graph conditioned on all the subsets of the remaining
nodes. Whereas, score-based methods rely on a metric to score
a candiadte directed acyclic graph (DAG) based on how well
it explains the data, we refer the reader to [2] for a survey on
the graph structure recovery methods.

Contributions This work is the first application of density
evolution and message-passing algorithms to design sensing
matrices for sparse covariance and graph structure recovery
with linear structural equations. We summarize our contribu-
tions as follows:

1) We propose a novel approach to optimally design a low
dimensional data collection (measurement) scheme from
a high dimensional signal that would allow for recovering
a sparse covariance matrix from these measurements.
We use density evolution-based analysis of the message-
passing algorithm to reduce the design procedure into a
convex program.

2) We propose two separate design schemes: (i) (Regular
sensing) equal preference over all the entries of the
covariance matrix, and (ii) (Preferential sensing) pref-
erential treatment over certain entries of the covariance
matrix. We also showcase the feasibility of causal graph
recovery from the estimated covariance matrix.

II. PROBLEM DESCRIPTION

In this section, we provide a formal description of our
problem statement starting with the notations. All vectors
are denoted by lowercase boldface letters, x, and matrices
by uppercase boldfaced letters, A. A∗,i denotes the i-th
column of the matrix A, similarly Aj,∗ denotes the j-th
row of A. ∥A∥1 =

∑
ij |Aij | and ∥A∥F =

√∑
ij A

2
ij and

∥x∥p =
(∑

i x
p
i

)1/p
. v(A) denotes the vectorized form of

matrix A.
Consider a linear measurement system of the form,

y = Ax+ n, (2)

where y ∈ Rd denotes the observations, x ∈ Rp denotes
the unknown vector, A ∈ Rd×p denotes sensing matrix, and
n ∈ Rd denotes the measurement noise. For the case when
d < p, we are interested in the problem of recovering the
covariance of x from the observations y. Our goal is to design
a sparse sensing matrix A that is capable of recovering the
covariance from compressed measurements and at the same
time being able to provide selective preference to a sub-block
of the covariance matrix. That is, we would like a sub-block of
the covariance matrix to be recovered with a lower probability
of error than the rest of the covariance.

A. Covariance Recovery

Under the linear measurement system discussed previously,
when the measurement noise is zero, the covariance of the
observations y is given by ΣY = AΣAT . We further make
the assumption that the covariance of X is a sparse matrix.

The covariance recovery can now be posed as the following
convex program,

min
Σ

∥Σ∥1 subject to ΣY = AΣAT . (P1)

Since we only have access to the observed samples of y,
the true covariance is approximated by the sample covariance,
Σ

(N)
Y = (1/N)

∑
i yiy

T
i . Additionally, upon vectorization, we

have AΣAT = (A⊗A)v(Σ), where ⊗ denotes the Kronecker
product. This gives the following equivalent formulation of
(P1),

min
Σ

∥v(Σ)∥1 s.t.
∥∥∥v(Σ(N)

Y )− (A⊗A)v(Σ)
∥∥∥2
2
≤ κ. (P2)

In this vectorized form, (A ⊗ A) can be thought of as the
new sensing matrix having a Kronecker product structure and
v(Σ) to be the sparse vector that has to be recovered.

III. SENSING MATRIX FOR REGULAR RECOVERY

In this section, we describe the design scheme for the
sensing matrix via the density evolution methodology. We first
focus on the regular sensing setting where all the entries of
the covariance matrix are treated equally. For ease of notation
let us denote γ = v(ΣY ), χ = v(Σ), and A⊗ = A⊗A. The
solution to (P2) can be viewed as the solution to the following
maximum a posteriori (MAP) estimator

χ̂ = argmax
χ

exp

(
−

∥γ −A⊗χ∥22
2σ2

)
exp

(
− f(χ)

)
, (3)

where f(χ) is the generalized regularizer term. When f(χ) is
set to ∥χ∥1 then the MAP estimator is exactly equivalent to
(P2). Here, we make a few assumptions on the sensing matrix
and the regularizer: (i) The sensing matrix A is sparse with
EAij = 0 and Aij ∈ {0,±A−1/2}, and (ii) The regularizer
f(χ) can be decomposed, f(χ) =

∑
i f(χi).

To develop the design framework, we associate (3) with a
factor graph G = (V, E) consisting of nodes corresponding to
components of χ (known as variable nodes) and components
of γ (known as check nodes). The readers are referred to the
appendix for an illustration of the factor graph and some of
its structural properties. An edge exists between χi and γj if
A⊗

ij ̸= 0.
In view of the factor graph, the recovery of ΣX can be

thought of as an inference problem over G which can be
solved using the message-passing algorithm. Following the
notations of [16], let m

(t)
i→a denote the message going from

the i-th variable node to the a-th check node at the t-th
iteration. Similarly, let m̂(t)

a→i denote the message going from
a-th check node to the i-th variable node at the t-th iteration.
The message-passing algorithm is then given by

m
(t+1)
i→a (χi) ∼=e−f(χi)

∏
b∈∂i\a

m̂
(t)
b→i(χi); (4)

m̂
(t+1)
a→i (χi) ∼=

∫ ∏
j∈∂a\i

m
(t+1)
j→a (χj)e

−
(γa−ΣjAajχj)

2

2σ2 dχj , (5)



where ∂a, ∂i denote the neighborhood of the a-th check node
and the i-th variable node respectively and ∼= denotes equality
up to a normalization constant. At iteration t, χi can be
recovered by taking argmax of the product of all the messages
coming to the i-th variable node.

We define λ(α) and ρ(α) to be the distribution of the
number of non-zero entries in the columns and rows of A,
which would later be used for designing the sensing matrix.
The degree distribution of the check nodes and the variable
nodes can then be obtained from λ(α) and ρ(α), refer to the
appendix for more details.

A. Density Evolution

In order to design the sensing matrix we analyze the
convergence of the message-passing algorithm on the factor
graph. A sensing matrix is “good” if all the messages in the
factor graph converge to the right value (the covariance of
x). To that end, the messages are treated as random variables,
and in particular, they are chosen to be Gaussian distributed
due to their simplicity. That is, m(t)

i→a ∼ N (µ
(t)
i→a, v

(t)
i→a) and

m̂
(t)
a→i ∼ N (µ̂

(t)
a→i, v̂

(t)
a→i). The convergence of (3) is analyzed

by tracking the following two quantities

E(t) =
1

d2p2

d2∑
a=1

p2∑
i=1

(
µ
(t)
i→a − χi

)2
(6)

V (t) =
1

d2p2

d2∑
a=1

p2∑
i=1

v
(t)
i→a. (7)

Where E(t) and V (t) represent the average error and variance
of all the messages in the factor graph at iteration t. To enforce
sparsity, the regularization function f(χ) is set as β∥χ∥1,
this is equivalent to enforcing Laplacian prior on χ. Upon
analyzing the density of each message in the factor graph
over time(density evolution), (6) and (7) can be reduced to
the following form,

E(t+1) = Eprior(s)Ez∼N (0,1)

[
prox

(
s+ a1z

√
E(t);

βa2V
(t)
)
− s

]2
(8)

V (t+1) = Eprior(s)Ez∼N (0,1)

[
βa2V

(t)prox′
(
s+ a1z

√
E(t);

βa2V
(t)
)]

, (9)

where

a1 =
∑

i,i′,j,j′

fr
i,i′,j,j′

√
ii′/jj′;

a2 =
∑

i,i′,j,j′

fr
i,i′,j,j′(ii

′/jj′),

where fr
i,i′,j,j′ = ρiρi′λjλj′ . prox(a; b) denotes the soft-

threshold function, and prox′(a; b) is the derivative of the
soft-threshold function with respect to the first argument. For

a detailed derivation of these quantities please refer to the
supplementary notes.

In designing a “good” sensing matrix we would like to
minimize the number of measurements needed to recover
Σ. Additionally, we need the message-passing algorithm to
converge, i.e., V (t) → 0 and the average error should
shrink to zero, E(t) → 0 as t → ∞. However, enforcing
limt→∞(E(t), V (t)) = (0, 0) is not straightforward as it
requires running the DE updates numerically until convergence
is achieved. For the case of sparse vector recovery, [16]
showed that these requirements can be reduced to two inequal-
ity constraints making it easier to check for satisfiability. We
extend this to the case of covariance recovery in the form of
the following theorem.

Theorem 1: Let Σ be k2-sparse and for c0 > 0,
set β = p2

c0 log(p/k) . Then, a sufficient condition for
limt→∞(E(t), V (t)) = (0, 0) results in

a21 ≤ p2

k2
; a2 ≤ p2

2c0k2 log(p/k)
.

Therefore the design of the sensing matrix can be posed as
the following optimization problem,

min
λ∈∆dv ;
ρ∈∆dc

d

p
=

∑
i≥2 iλi∑
j≥2 jρj

(10)

s.t a21 ≤ p2

k2
(11)

a2 ≤ p2

2c0k2 log(p/k)
(12)

λ1 = ρ1 = 0, (13)

where ∆d is a d-dimensional simplex, dv and dc denote the
maximum column and row degree respectively of sensing
matrix A. The final constraint (13) is added to avoid one-way
message passing.

The above optimization problem tries to find the degree
distributions λ and ρ such that d/p (y-dim/x-dim) is mini-
mum while guaranteeing that the message passing algorithm
converges in the form of constraints (11) and (12). Hence,
ensuring that the inference over the factor graph yields the
true covariance of x.

Once we have the distributions λ and ρ from solving
the above optimization program, we then sample the sensing
matrix such that the number of non-zero entries in the rows
and columns satisfies the obtained distributions. For every non-
zero entry of A, P (Aij = A−1/2) = P (Aij = −A−1/2) = 1

2 .
With the sensing matrix obtained, (P2) can be solved using
any convex program solver.

IV. SENSING MATRIX FOR PREFERENTIAL RECOVERY

In this section, we extend the density evolution based
sensing matrix design to the case of preferential recovery of
the covariance matrix. That is, we employ the DE framework
to construct sensing matrices that provide higher importance to



a sub-block of the covariance matrix. In other words, we treat
certain variables as important and try to recover the covariance
between the important variables with higher accuracy.

A. Density Evolution

The unknown signal x is divided into two parts xH ∈ RnH

(high priority), and xL ∈ RnL (low priority), without loss
of generality we assume that x = (xH ,xL). This splits the
covariance into four sub-matrices,

ΣX =

[
ΣHH ΣHL

ΣLH ΣLL

]
. (14)

In this case, we would like to place higher importance on
ΣHH and design the sensing matrix in order to recover the
higher priority sub-block with higher accuracy than the other
components. To that end, we introduce the degree distributions
λH(α) and λL(α) corresponding to the first nH columns and
the last nL columns of the sensing matrix respectively. Simi-
larly, ρH(α) and ρL(α) correspond to the degree distribution
of the first nH rows and the last nL rows of the sensing matrix.

Generalizing the analysis for regular sensing, the average er-
ror and the variance for each sub-matrix of ΣX are separately
tracked. For ΣHH sub-block, we define

EHH =
1

d2 · n2
H

∑
a

∑
i∈HH

(µi→a − χi)
2 (15)

VHH =
1

d2 · n2
H

∑
a

∑
i∈HH

vt→a (16)

The average error and variance for LH, HL, and LL are defined
in a similar manner. Similar to regular sensing by assuming a
Laplacian prior on χ we then have

E
(t+1)
HH = Eprior(s)Ez∼N (0,1)

[
prox

(
s+ zb

(t)
HH,1;

b
(t)
HH,2

)
− s

]2
(17)

V
(t+1)
HH = Eprior(s)Ez∼N (0,1)

[
b
(t)
HH,2prox′

(
s+ zb

(t)
HH,1;

b
(t)
HH,2

)]
, (18)

where b
(t)
HH,1 and b

(t)
HH,2 are defined as follows

b
(t)
HH,1 =

∑
ℓℓ′,ii′,jj′,kk′

fp
ℓℓ′,ii′,jj′,kk′

√
F ; (19)

b
(t)
HH,2 =

∑
ℓℓ′,ii′,jj′,kk′

fp
ℓℓ′,ii′,jj′,kk′F . (20)

F =
Aσ2 + ii′V

(t)
HH + jj′V

(t)
HL + kk′V

(t)
LL

ℓℓ′
. (21)

Where fp
ℓℓ′,ii′,jj′,kk′ = λH,ℓλH,ℓ′ρH,iρH,i′ρH,jρL,j′ρL,kρL,k′ .

In this setting, in order to design a “good” sensing matrix, we
would like to ensure that the inference over the factor graph
converges to the true covariance for the high-priority portion

of the covariance matrix. To that end, the sensing matrix must
satisfy the following set of constraints.
R1. We require consistency with respect to the number of non-

zero entries in the sensing matrix. Starting with the high-
priority part, the number of non-zero entries in the first
nH columns is given by nH(

∑
i λH,i) (counting the non-

zeros by column) and d(
∑

i iρH,i) (counting by rows).
Therefore we have the following constraint

nH

(∑
i

λH,i

)
= d

(∑
i

ρH,i

)
.

Similarly, the consistency requirement on the low-priority
part would yield nL(

∑
i λL,i) = d(

∑
i iρH,i).

R2. We require the variances to converge to zero. That is,

lim
t→∞

(
V

(t)
HH , V

(t)
HL, V

(t)
LL

)
= (0, 0, 0)

This implies that the message-passing algorithm on the
factor graph converges. Here we exclude VLH due to the
symmetric nature of the covariance matrix.

R3. Due to the preferential nature of the design we require
that the error in the high-priority part of the covariance to
be lower than the other sub-matrices. In other words, let
δ
(t)
E,HH = E

(t+1)
HH −E

(t)
HH , and we similarly define δ

(t)
E,HL

and δ
(t)
E,LL, we want |δ(t)E,HH | ≤ |δ(t)E,HL| and |δ(t)E,HH | ≤

|δ(t)E,LL| for all t ≥ T0 for some T0.
Hence, the design of the sensing matrix can be posed as the
following convex problem where we minimize the ratio of y-
dim over x-dim similar to the regular sensing case.

min
λH∈∆dvH

;

λL∈∆dvL
;

ρH∈∆dcH
;

ρL∈∆dcL

d

p
=

nL

∑
i iλL,i + nH

∑
i iλH,i∑

j j(ρH,j + ρL,j)
(22)

s.t
∑

i iλL,i∑
i iλH,i

×
∑

i iρH,i∑
i iρL,i

=
nH

nL
; (23)

Requirement 2 & 3; (24)
λH,1 = λL,1 = ρH,1 = ρL,1 = 0, (25)

B. Constraint Relaxation for Laplacian Prior

Consider a sparse covariance matrix where the high-priority
subpart is kHH -sparse and the low-priority subpart is kLL-
sparse, with the added assumption that kHH/nh ≫ kLL/nL.
As stated in section III-A, directly enforcing requirements 2
and 3 in equation (24) is not straightforward. Fortunately, by
assuming the prior to be Laplacian, requirements 2 and 3 can
be relaxed to obtain the following inequalities constraints that
are convex in the degree polynomials{√

βHHkHH

nHH

∑
ℓ

λH,ℓ

ℓ
+

√
βLLkLL

nLL

∑
ℓ

λL,ℓ

ℓ

}
×[(∑

i

iρH,i

)2

+

(∑
i

iρL,i

)2
]
≤ 1. (26)
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√
kHH

nHH

(∑
ℓ

λH,ℓ√
ℓ

)
≤
√

kHL

nHL

(∑
ℓ

λL,ℓ√
ℓ

)
; (27)

(
kHH

nHH

)1/4
(∑

ℓ

λH,ℓ√
ℓ

)
≤
(
kLL

nLL

)1/4
(∑

ℓ

λL,ℓ√
ℓ

)
. (28)

Here, equation (26) corresponds to requirement 2 and equation
(28) corresponds to requirement 3. The above inequalities are
convex with respect to the degree polynomials and hence
can be solved using any convex program solver. The key
idea behind the relaxation is to approximate δ

(t)
E,HH , δ

(t)
V,HH ,

δ
(t)
E,HL, δ

(t)
V,HL and δ

(t)
E,LL, δ

(t)
V,LL by its first-order Taylor series

approximation and enforcing the operator norm of the Jacobian
to be less than one, readers are referred to the supplementary
notes for more details.

V. GRAPH STRUCTURE RECOVERY

In this section, we discuss an application of compressed
covariance recovery for causal graph recovery. To that end,
the unknown signal is modeled using a structural equation
model (SEM) [18], [19] given by,

xi = W T
∗,ix+ zi, ∀i = 1, . . . , p (29)

where W denotes the weighted adjacency matrix and zi cor-
responds to intrinsic noise in the system. We would also like
to learn the weighted adjacency matrix from the compressed
measurements y using the recovered covariance of x. An
equivalent representation of the above SEM is to consider a
directed (causal) graph G = (V,E), where V = {x1, . . . , xp}
with W being its adjacency matrix, i.e., Wij is the weight
corresponding to the edge (xi, xj) ∈ E. For a given xj we
define parent set of xi, denoted by Pa(xi), as the set of
nodes xi for which Wij ̸= 0. This representation allows for
a more straightforward causal semantics for the underlying
interactions between the variables in the system. From the
covariance matrix estimated using the sensing matrix designed
via the methodology described in sections III and IV, the
algorithm developed by [3] is utilized for recovering the
structure of the underlying causal graph.

VI. EXPERIMENTS

In this section, we present the numerical experiments per-
formed to evaluate covariance and graph recovery. To generate
the GBN, we sampled directed graphs from Erdös-Rényi

class of random graphs with edge weights set to ±1/2 with
probability 1/2. We first study the effectiveness of the sensing
system for recovery of the entire covariance recovery matrix
followed by preferential recovery of the high-priority portion
of the covariance matrix. We compare the performance with
the current state-of-the-art [11], where the sensing matrix is
the adjacency matrix of δ-left-regular bipartite graph. We then
evaluate the performance of the sensing system for graph
structure recovery.

A. Covariance Recovery

1) Regular Sensing: we consider two different design
schemes for constructing the sensing matrix. (i) Fixed row
degree and variable column degree. In this case, ρi = 1 when
i = dc and 0 otherwise. We then solve (10) for λ, and (ii)
Variable row and column degree. In this case we solve (10) for
both λ and ρ. In case (i), the resulting optimization program
is readily solvable by any convex program solver. For case
(ii), we first keep λ constant and solve for ρ, then using the
obtained solution for ρ we solve for λ.

The recovery performance is evaluated using three metrics,
namely, (1) Maximum Absolute Error (MAE), (2) Precision,
and (3) Recall of the structure of the covariance.

The two design schemes attain similar performance with
respect to all the metrics, as seen in Figure 1. We can also
observe that the density evolution based sensing matrices
achieve similar performance to that of [11] when δ is tuned.
On the other hand, improper assignment of δ results in poor
performance compared to the density evolution based design.

2) Preferential Sensing: For the case of preferential sens-
ing, we considered graphs with p = 200 nodes, where we
choose covariance between the first nH = 50 nodes to be of
higher priority. The measurements are then compressed down
to d = 60 dimensions. The performance of the preferential
sensing matrix is compared with that of [11] with respect to
the same metrics described in the previous section on the high-
priority sub-matrix of the covariance. In this case, we fix the
degree distribution of the check nodes and solve for the degree
distribution of the variable using the procedure described in
section IV-A. As seen from Figure 2, the proposed preferential
sensing matrix outperforms the baseline with respect to all the
error metrics.



Fig. 2. Performance comparison on preferential sensing of covariance matrix.
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Fig. 3. Performance comparison on graph recovery with p = 200 nodes and
nH = 50 high priority nodes.

B. Graph Structure Recovery

Using the procedure described in section V, the graph
structure was recovered from the covariance matrix. The per-
formance is evaluated using precision and recall as metrics. For
preferential recovery, we only consider the edges connecting
the high-priority nodes for evaluating the performance. The
proposed regular sensing matrix achieves similar performance
to that of the baseline, like in the case of covariance recovery
and hence we refer the readers to the appendix for details.
Figure 3 shows the performance comparison between the
proposed preferential sensing matrix and the baseline. As seen
from the figure, we see a similar trend to that of covariance
recovery, i.e., the preferential sensing system outperforms the
baseline with respect to all the metrics.

VII. CONCLUSION

In this paper, we presented a general framework for collect-
ing lower dimensional samples of the signal generated from
a GBN for accurate recovery of the covariance and graph
structure under (i) regular and (ii) preferential sensing regimes.
We also showcased the feasibility of our approach through
numerical simulations. There are several directions that could
be of interest in the future. While we restricted our focus to
GBNs, exploring other types of additive noise distributions
would be an interesting avenue. The supplementary section
containing
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The appendix is organized as follows: In Appendix A
we discuss some of the structural properties of the factor
graph that arise from the Knronecker product structure of
the sensing matrix. In Appendix B, we derive the degree
distribution of the check nodes and the variable nodes in
the factor in terms of the λ and ρ. Details regarding the
derivation of the density update equations can be found
in the supplementary notes, https://muralikgs.github.io/assets/
pdf/supplementary_notes_allerton.pdf

APPENDIX A
FACTOR GRAPH

To develop the density evolution framework, we associate
(3) with a factor graph G = (V, E) consisting of nodes corre-
sponding to components of χ (variable nodes) and components
of γ (check nodes). The readers are refered to the appendix for
an illustration of the factor graph and some of the structural
properties. An edge exists between χi and γj if A⊗

ij ̸= 0.
At this point it is important to illustrate some of the key

structural properties of the factor graph that arises due to the
Kronecker product nature of A⊗, see Figures 4 and 5. The
check nodes and the variable nodes consist of d and p blocks
respectively, and each check node block contains d nodes and
each variable node block contains p nodes. i-th check node
block is considered to be connected to j-th variable node block
if any node in the i-th check node block is connected to any
node in the j-th variable node block. This is true when Aij ̸=
0. The connection between the nodes in the i-th check node
block and j-th variable node block, if it exists, is determined
by A. That is, within in the blocks, the k-th check node is
connected to l-th variable node if Akl ̸= 0. Figure 5 shows
the factor graph for the following sensing matrix,

A =

[
1 1 1
0 1 1

]
(30)

1 2

1 2 3

Fig. 4. Illustration of the connections in factor graph corresponding to
the Kronecker product when the sensing matrix is given by equation (30).
(a) shows the connections at the block level, the number within the node
corresponds to the block ID and as seen in (a), the connections at the block
level are governed by A.

APPENDIX B
DEGREE DISTRIBUTION OF CHECK NODES AND VARIABLE

NODES

As described in section 3.1, let λ ∈ ∆dv , ρ ∈ ∆dc be the
degree distributions of columns and rows of A. We can divide
γ and χ into blocks of size d and p nodes respectively. Each
block corresponds to a column of ΣY and Σ. Let γi denote
the i-th block of γ and similarly let χj denote the j-th block

Check - 1 Check - 2

Variable - 1 Variable - 2 Variable - 3

1 2

1 2 3

1 2

1 2 3 1 2 3

Fig. 5. Illustration of the connections at the node level in the factor graph
corresponding to the Kronecker product when the sensing matrix is given by
equation (30).

of χ. In the factor graph, 5, blocks γi and χj are connected
if at least one node in γi is connected to at least one node
in χj . The connections at the block level are defined by the
sensing matrix A. In other words, γi and χj are connected
if Aij ̸= 0. Figure 6, illustrates the connections at the block
level. Let us now focus on the connections between the nodes

...

...

...

...

a11

aj1A

ajiA

ajnA

amn

γ1

γj

γd

χ1

χi

χp

Fig. 6. Illustration of the connections in the factor graph at block level.

in block γj and χi. We denote γ
(k)
j to be the k-th node in

check node block j and χℓ
i to be the ℓ-th node in the variable

node block i. The connections between the blocks γj and χi,
if it exists (Aji ̸= 0), is again characterized by A. Figure 7
illustrated the connected between the nodes in a variable node
block and a check node block.
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Fig. 7. Illustration of the connections between blocks γj and χi



Fig. 8. Comparison of the performance of the proposed sensing system with that of [11] (BS - best, BS - worst lines in the plots). Number of nodes, p = 200.
The performance is evaluated with respect to precision and recall of the edges in the graph.

Therefore we now have,

γ
(k)
j =

p∑
i=1

p∑
ℓ=1

AjiAkℓχ
(ℓ)
i . (31)

Since deg(γ(k)
j ) would be the number of non-zero terms

in the above summation, we then have deg(γ(k)
j ) =

deg(A(j))deg(A(k)), where A(j) denotes the j-th row of
A. Using a similar argument we can also conclude that
deg(χ(ℓ)

i ) = deg(Ai)deg(Aℓ), where Ai denotes the i-th
column of A. Since deg(Ai) ∈ {1, . . . , dv} and deg(A(j)) ∈
{1, . . . , dc} we have that deg(γ(k)

j ) ∈ {1, . . . , d2c} and
deg(χ(ℓ)

i ) = {1, . . . , d2v}. Therefore we have

P
(

deg(γ(k)
j ) = k

)
=

∑
j,j′:jj′=k

ρjρj′ (32)

And,
P
(

deg(χ(ℓ)
i ) = k

)
=

∑
i,i′:ii′=k

λiλi′ (33)

APPENDIX C
GRAPH STRUCTURE RECOVERY (REGULAR SENSING)

Here we compare the performance of the proposed regular
sensing matrix on graph structure recovery task with the
sensing system proposed by [11]. The sensing systems are
evaluated with respect to: (i) MAE, (ii) Precision, and (iii)
Recall. We can see from Figure 8 that the relative performance
between the two systems is similar to the behavior exhibited on
the covariance recovery task. That is, the two sensing systems
are at an equal footing when the baseline is tuned.


